

Appendix to the Operations Manual

Transmitter Series22 (EC22, CC22, CS22, ZD22 etc.)

TRM22 Modbus Implementation

Table of Contents

1. GENERAL INFORMATION 2. INTERFACE 3. BUS STRUCTURE 4. PARAMERTER OF COMMUNICATION 5. IMPLEMENTATION OF PROTOCOL 5.1 MODBUS FUNCTION CODES 5.2 TELEGRAM DESCRIPTION 5.2.1 READ INPUT REGISTERS 5.2.2 WRITE MULTIPLE REGISTERS 5.2.3 READ/WRITE MULTIPLE REGISTERS 5.2.4 EXCEPTION CODE 5.3 REGISTER MAP 5.3.1 READ INPUT REGISTERS 5.3.2 WRITE MULTIPLE REGISTERS 5.3.3 READ/WRITE MULTIPLE REGISTERS 5.3.3 READ/WRITE MULTIPLE REGISTERS 5.3.3 READ/WRITE MULTIPLE REGISTERS 5.3.3 READ/WRITE MULTIPLE REGISTERS 5.4 UNIQUE TELEGRAM IDENTIFICATION	3 3 4 4 4
 BUS STRUCTURE	3 3 4 4
 4. PARAMERTER OF COMMUNICATION 5. IMPLEMENTATION OF PROTOCOL 5.1 MODBUS FUNCTION CODES	3 4 4 4
5.IMPLEMENTATION OF PROTOCOL5.1MODBUS FUNCTION CODES5.2TELEGRAM DESCRIPTION5.2.1READ INPUT REGISTERS5.2.2WRITE MULTIPLE REGISTERS5.2.3READ/WRITE MULTIPLE REGISTERS5.2.4Exception Code5.3REGISTER MAP5.3.1READ INPUT REGISTERS5.3.2WRITE MULTIPLE REGISTERS5.3.3READ/WRITE MULTIPLE REGISTERS	4 4 4
5.IMPLEMENTATION OF PROTOCOL5.1MODBUS FUNCTION CODES5.2TELEGRAM DESCRIPTION5.2.1READ INPUT REGISTERS5.2.2WRITE MULTIPLE REGISTERS5.2.3READ/WRITE MULTIPLE REGISTERS5.2.4Exception Code5.3REGISTER MAP5.3.1READ INPUT REGISTERS5.3.2WRITE MULTIPLE REGISTERS5.3.3READ/WRITE MULTIPLE REGISTERS	4 4 4
 5.2 TELEGRAM DESCRIPTION. 5.2.1 READ INPUT REGISTERS. 5.2.2 WRITE MULTIPLE REGISTERS. 5.2.3 READ/WRITE MULTIPLE REGISTERS. 5.2.4 EXCEPTION CODE. 5.3 REGISTER MAP. 5.3.1 READ INPUT REGISTERS. 5.3.2 WRITE MULTIPLE REGISTERS. 5.3.3 READ/WRITE MULTIPLE REGISTERS. 	4
 5.2.1 READ INPUT REGISTERS. 5.2.2 WRITE MULTIPLE REGISTERS 5.2.3 READ/WRITE MULTIPLE REGISTERS 5.2.4 EXCEPTION CODE. 5.3 REGISTER MAP. 5.3.1 READ INPUT REGISTERS. 5.3.2 WRITE MULTIPLE REGISTERS 5.3.3 READ/WRITE MULTIPLE REGISTERS 	
 5.2.2 WRITE MULTIPLE REGISTERS 5.2.3 READ/WRITE MULTIPLE REGISTERS 5.2.4 EXCEPTION CODE 5.3 REGISTER MAP 5.3.1 READ INPUT REGISTERS 5.3.2 WRITE MULTIPLE REGISTERS 5.3.3 READ/WRITE MULTIPLE REGISTERS 	-
 5.2.3 READ/WRITE MULTIPLE REGISTERS 5.2.4 EXCEPTION CODE 5.3 REGISTER MAP 5.3.1 READ INPUT REGISTERS 5.3.2 WRITE MULTIPLE REGISTERS 5.3.3 READ/WRITE MULTIPLE REGISTERS 	5
 5.2.4 Exception Code	
 5.3 REGISTER MAP. 5.3.1 READ INPUT REGISTERS. 5.3.2 WRITE MULTIPLE REGISTERS . 5.3.3 READ/WRITE MULTIPLE REGISTERS . 	6
5.3.1 READ INPUT REGISTERS 5.3.2 WRITE MULTIPLE REGISTERS 5.3.3 READ/WRITE MULTIPLE REGISTERS	6
5.3.2 Write Multiple Registers5.3.3 Read/Write Multiple Registers	
5.3.3 Read/Write Multiple Registers	
5.4 UNIQUE TELEGRAM IDENTIFICATION	
5.5 CHRONOLOGICAL SEQUENCE OF THE MEASURED VALUE ENQUIRY	. 12
6. GFG CODING TABLES	.13
6.1 TABLE OF UNITS	. 13
6.2 TABLE OF GAS TYPES AND MEASURED VARIABLES	
7. REFERENCES	. 15

side

1. General information

The Series22 transmitters (TRM22 for short, including types EC22, CC22, CS22, ZD22 etc.) support digital communication via an RS485 interface. Communication takes place according to the Modbus protocol in RTU mode.

The transmitter operates in slave mode and is used for communication with the connected GMA200 and PC software, if required. Only data from an external master device (e.g. central unit or gateway to the control station) can be read from the GMA and processed further.

This document describes what data and how it can be read from the TRM.

2. Interface

RS485 (Multipoint)

• Bus connection of master and slaves via a two-core screened cable; e.g. LIYCY 4x0.75mm2 (terminal connection)

3. Bus Structure

The maximum bus length should not exceed 1200m (specification limit RS485), and a maximum of 64 transmitters and one master can be connected. The transmission rate depends on the cable length and can be set to a maximum of 38400 Baud.

The supply of the connected devices is essential to the structure of the bus, therefore the cable crosssection used depends on the following parameters:

- Number of devices and the expansion stage (power requirement)
- Cable length (voltage drop at cable resistance)
- Quality of the supply voltage (24V DC)

The real maximum of line length and transmission rate depends greatly on the construction of the network. In particular, star topologies should be avoided due to the resulting long spur lines. The daisy chain structures are advantageous.

The bus levels are defined by the master and the bus must be terminated at both ends with 120Ω . For this purpose, a terminating resistor can be switched on in the transmitter.

4. Parameter of Communication

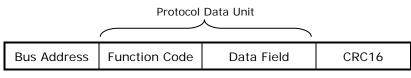
Bus Address	1 247 (in slave mode) <u>Note:</u> Specification of the address also defines the operating mode of the bus node. Address 0 deactivates bus operation and an address other than 0, activates bus operation).
Transfer Rate	9600, 19200, 38400 Baud
Data Format	1 start bit 8 data bits 1 parity bit (<i>even parity</i>) with 1 stop bit (8E1)
Transmission Mode	RTU (Remote Terminal Unit) according to [MoSL]

The settings are made via the service menu of the transmitters. (see operating instructions; delivery status: addr.1, 19200, 8E1).

5. Implementatio of Protocol

In reference to the ISO/OSI model, the Modbus protocol consists of the application, backup and physical layer according to the following table. The remaining four layers remain unused.

Shift	ISO/OSI Model	Modbus Protocol	Reference
7	Application Layer	MODBUS Application Protocol	[MAPS]
6	Presentation Layer	vacuous	
5	Session Layer (Session Layer)	vacuous	
4	Transport Layer (Transport Layer)	vacuous	
3	Network Layer	vacuous	
2	Link Layer (Data Link Layer)	MODBUS Serial Line Protocol	[MoSL]
1	Physical Layer (physical layer)	EIA/TIA-485	


The subsequent protocol description refers exclusively to the application layer.

5.1 Modbus Function Codes

Data can be read and written from the TRM via the Modbus. Data access is based on mapped registers within the TRM, which can be read and/or written by the master using the following specified Modbus Function Codes [MAPS].

- Read Input Registers 04 (0x04)
- Write Multiple Registers 16 (0x10)
- Read/Write Multiple Registers 23 (0x17)

The registers are 16-bit values with a 16-bit address range. The allocation of the transmission data to the register addresses will be described in section 5.3 "Register Map". The following figure shows the general structure of a Modbus frame consisting of the bus address, the function code, the data field and a CRC16 Modbus checksum.

General Modbus Frame

5.2 Telegram description

As shown in the figure above, each telegram begins with the bus address and the function code and ends with a CRC16-Modbus-checksum. In between there is the application-specific data field.

The CRC16-Modbus-checksum is Modbus-specific and has the polynomial 0xA001 (see specification according to [MoSL]). With the exception of the checksum, all data is transmitted in Big-Endian-Format (MSB first), and the checksum in Little-Endian-Format (LSB first).

The telegrams for the various general function codes and the functionalities implemented in the TRM are described below.

5.2.1 Read Input Registers

For the reading out of information, the master sends the start address and the number of registers. The slave responds with the contents of the requested registers.

Length	Content	
1 byte	1 247	
1 byte	0x04	
2 bytes	0x0000 0x06F2	
2 bytes	N*	$N^* =$ Number of registers (149)
2 bytes	(0x0000 0xFFFF)	
	1 byte 1 byte 2 bytes 2 bytes	1 byte 1 247 1 byte 0x04 2 bytes 0x0000 0x06F2 2 bytes N*

Response	Length	Content	
Bus Address	1 byte	1 247	
Function Code	1 byte	0x04	
Number of Bytes	1 byte	2 x N*	N_{\star} Number of registers $(1, 40)$
Register Content	N* x 2 Bytes	data	$N^* =$ Number of registers (149)
Modbus Checksum	2 bytes	(0x0000 0xFFFF)	

5.2.2 Write Multiple Registers

The master sends the start address, the number and the content of the registers in the request for writing registers. The slave sends the start address and the number of registers as confirmation.

Request	Length	Content
Bus Address	1 byte	1 247
Function Code	1 byte	0x10
Start Address	2 bytes	0x1000
Number of Registers	2 bytes	1
Number of Bytes	1 bytes	2
Register Content	2 bytes	data
Modbus Checksum	2 bytes	(0x0000 0xFFFF)

Response	Length	Content
Bus Address	1 byte	1 247
Function Code	1 byte	0x10
Start Address	2 bytes	0x1000
Number of Registers	2 bytes	1
Modbus Checksum	2 bytes	(0x0000 0xFFFF)

5.2.3 Read/Write Multiple Registers

In the request, the master sends start address and number of registers to be read and start address, number and content of the registers to be written. The slave responds with the contents of the requested registers.

Request	Length	Content	
Bus Address	1 byte	1 247	
Function Code	1 byte	0x17	
Start Address (R)	2 bytes	0x0000 0x06F2	(R) = Read
Number of Registers (R)	2 bytes	N*	$N^* = Number of registers (149)$
Start Address (W)	2 bytes	0x0000	(W) = Write
Number of Registers (W)	2 bytes	1	
Number of Bytes (W)	1 bytes	2	
Register Content (W)	2 bytes	data	
Modbus Checksum	2 bytes	(0x0000 0xFFFF)	
	1	1	-
Response	Length	Content	
Bus Address	1 byte	1 247	
Function Code	1 byte	0x17	
Number of Bytes	1 byte	2 x N*	N* Number of registers (1 40)
Register Content	N* x 2 Bytes	data	N* = Number of registers (149)
Modbus Checksum	2 bytes	(0x0000 0xFFFF)	

5.2.4 Exception Code

If an error occurs during reading or writing, the slave responds with an error code (exception code) instead of the expected response and sets the bit with the highest value (MSB) in the function code.

Error Response	Length	Content
Bus Address	1 byte	1 247
Function Code	1 byte	0x84 / 0x90 / 0x97
Exception Code	1 byte	0x01 0x04
Modbus Checksum	2 bytes	(0x0000 0xFFFF)

The following four exception codes are possible for the implemented function codes.

Exception Code	Designation	Error Description
0x01	Illegal Function	Invalid Function Code
0x02	Illegal Data Address	Invalid Register Address
0x03	Illegal Data Value	Invalid Number of Registers
0x04	Slave Device Failure	Error when reading the registers

5.3 Register Map

Most of the registers are divided into two separate areas. Only the read access of the one range is possible (Read Input Registers) while the other allows only the write access (Write Multiple Registers). Only one register (0x0000) is for both read and write access.

Processes of reading and writing can also be combined (Read/Write Multiple Registers) in a communication cycle (Request $\leftarrow \rightarrow$ Response).

5.3.1 Read Input Registers

Basically the transmission data, which can be read from the TRM, can be divided into four groups:

Register Addresses	Transmission Data		
0x0000 0x000D	Identification parameters of the transmitter		
0x0100 0x0108	Status and measured values of the transmitter		
0x0200 0x031B	Measured value-related configuration parameters of the transmitter		

Section 5.6 "Chronological sequence of the measured value enquiry" describes when and what data should be read out by the TRM.

The following table describes the allocation of the transmission data to the register addresses and the data structure in detail. . By reading the register it should be ensured that the access to not specified register between the data segments in the register map should be deniedTherefore, depending on the register start address, only a limited number of registers can be read out in a telegram.

REGISTER MAP - READ INPUT REGISTERS 04 (0x04)				
Register Address	Max. Requestable Registers	Register Type (16 bit)	Parameter	Statement
0x0000	14	Unsigned	signature	Signature for telegram identification (decremented after readout).
0x0001	13	Unsigned	TRM type	Coding: $117 = EC28$ $131 = IR22$ $120 = EC22$ $132 = CC228$ $121 = CC22$ $133 = CC33$ $122 = CS22$ $134 = EC33$ $123 = CI22$ $135 = PI22$ $124 = ZD22$ $136 = EV22$ $125 = TC22$
0x0002	12	Unsigned	FW Version 1.uC	Firmware version of the mainboard $e.g. : 209 = v2.09$
0x0003	11	Unsigned	FW Version 2.uC	without function with TRM22
0x0004	10	Unsigned	TRM Serial Number	First ASCII character (UTF-8) of the serial number with a maximum of 10 digits.
				e.g.: 49,50,49,49,49,57,50,55,0,0 = "12111927" (here with zero termination)
0x000D	1	Unsigned	TRM Serial Number	Last ASCII character (UTF-8) of the serial number with a maximum of 10 digits.

Continuation see next page

Register	Max.	Register	Parameter	Statement	
Address	Requestable Registers	Type (16 bit)			
0x0100	9	Unsigned	Signature	Signature for telegram identification (decremented after readout).	
0x0101	8	Unsigned	TRM status	Bit definition: b0: LSB b1:} state b2: MSB b3: LSB b4: MSB } error group b5: LSB b6: Bits not used b7: MSB } Bits not used b7: MSB } Bits not used b7: MSB } Bits not used b7: MSB } 1=active 0=Inactiv b13: Alarm 3 b14: Overrange (AD) b15: Overrange (AD)	state high priority 7=SRV-Config 1=Startup 5=SRV-ZERO 6=SRV-SPAN 4=SRV-MENU 2=General fault 3=Measuring fault 0=Measuring 01: System error 10: Sensor error 11: Measuring
0x0102	7	Signed	TRM measured value (instantaneous value)	Measured value as instantaneous valu scaling factor, unit and gas type <i>Example:</i> - Measured value = 209 - Scaling factor = -1 - Unit = 2 - Gas type = 89 → Gas reading = 20.9 Vol.% O2	e related to
0x0103	6	Signed	TRM measured value (averaging interval 1)	Measured value as average over the a 1 (Function is available from v2.07.)	veraging interval
0x0104	5	Signed	TRM measured value (averaging interval 2)	Measured value as average over the a 2 (Function is available from v2.07.)	veraging interval
0x0105	4	Signed	TRM measured value (averaging interval 3)	Measured value as average over the a 3 (Function is available from v2.07.)	veraging interval
0x0106	3	Signed	temperature	Transmitter Temperature in 1/10 °C e.g. 355 = 35.5 °C	
0x0107	2	Unsigned	Uin Supply voltage	measured supply voltage of the transr 1/100 Volt e.g.: 2415 = 24,15V	nitter
0x0108	1	Unsigned	Iges total current	Maximum current of the transmitter in $e.g. 70 = 70 \text{mA}$	mA

Continuation see next page

Register Address	Max. Requestable Registers	Register Type (16 bit)	Parameter	Statement			
0x0200	14	Unsigned	Signature	Signature for telegram identification (decremented after readout).			
0x0201	13	Signed	Scaling Factor	of the TRM measured value -3: 0,001 -2: 0,01 -1: 0,1 0: 1			
0x0202	12	Unsigned	Unit	of the TRM measured value Coding by no. according to table for units and gas types			
0x0203	11	Unsigned	Gas Type	(see section 6)			
0x0204	10	Signed	MBB	Start and end of measuring range			
0x0205	9	Signed	MBE	related to scaling factor			
0x0206	8	Unsigned	Sensor type (MK-No.))			
0x0207	7	Unsigned	Alarm Directions	Direction of alarms AL3,AL2,AL1 with bit definition b2, b1, b0. Value=1: exceeding alarm Value=0: falling alarm			
0x0208	6	Signed	AL1	Alarm thresholds 1, 2, 3			
0x0209	5	Signed	AL2	related to scaling factor.			
0x020A	4	Signed	AL3	(value=0: alarm deactivated)			
0x020B	3	Unsigned	Averaging interval 1	Interval 1 for measured value averaging in minutes. If the value=0, no averaging takes place. and the current gas value is transmitted.			
0x020C	2	Unsigned	Averaging interval 2	Interval 2 for measured value averaging in minutes. If the value=0, no averaging takes place. and the current gas value is transmitted.			
0x020D	1	Unsigned	Averaging interval 3	Interval 3 for measured value averaging in minutes. If the value=0, no averaging takes place. and the current gas value is transmitted.			

Register Address	Max. Requestable Registers	Register Type (16 bit)	Parameter	Statement		
0x0300	28	Unsigned	Signature	Signature for telegram identification (decremented after readout).		
0x0301	27	Signed	Scaling Factor Order Test Gas Concentration	of the TRM measured value -3: 0,001 -2: 0,01 -1: 0,1 0: 1		
0x0302	26	Signed	Value of the test gas concentration	Value related to scaling factor, unit and gas type Example: - Measured value = 209 - Scaling factor = -1 - Unit = 2 - Gas type = 89 \Rightarrow Gas reading = 20.9 Vol.% O2		
0x0303	25	Unsigned	Sensor Serial Number	First ASCII character (UTF-8) of the maximum 10-digit SN		
				e.g.: 49,50,49,49,49,57,50,55,0,0 = "12111927" (with zero termination)		
0x030C	16	Unsigned	Sensor Serial Number	Last ASCII character (UTF-8) of the maximum 10-digit SN		
0x030D	15	Unsigned	Sensor Production Date	Days since 01.01.1980 (e.g. 12613 = 14 July 2014)		
0x030E	14	Unsigned	Act. Nr. of sensor operating days			
0x030F	13	Unsigned	max. nr.r of sensor operating days	e.g. 1100 days		
0x0310	12	Unsigned	Sensor operating days or date for ZERO adjustment [0].	Value <=10958: Operating days (no date available) Value > 10958: Date (days since 1.1.1980) e.g. 15 = Calibrated on 15th operating day (0= not calibrated)		
0x0311	11	Unsigned	Sensor operating days or date for SPAN adjustment [0].	Value <= 10958: Operating days (no date available) Value > 10958: Date (days since 1.1.1980) e.g. 15 = Calibrated on 15th operating day (0= not calibrated)		
0x0312	10	Signed	Signal value at ZERO adjustment [0].	100 = 1% of the nominal delta		
0x0313	9	Signed	Signal value at SPAN adjustment [0]	10000 = 100% of the nominal delta		
0x0314	8	Unsigned	Sensor operating days or date for ZERO adjustment [1].	Value <= 10958: Operating days (no date available) Value > 10958: Date (days since 1.1.1980) e.g. 8 = Calibrated on the 8th operating day (0= not calibrated)		
0x0315	7	Unsigned	Sensor operating days or date for SPAN adjustment [1].	Value <= 10958: Operating days (no date available) Value > 10958: Date (days since 1.1.1980) e.g. 8 = Calibrated on the 8th working day (0= not calibrated)		
0x0316	6	Signed	Signal value at ZERO adjustment [1].	100 = 1% of the nominal delta		
0x0317	5	Signed	Signal value during SPAN adjustment [1]	10000 = 100% of the nominal delta		
0x0318	4	Unsigned	Sensor operating days or date at ZERO adjustment [2].	Value <= 10958: Operating days (no date available) Value > 10958: Date (days since 1.1.1980) e.g. 1 = adjusted on 1st day of operation (0= not adjusted)		
0x0319	3	Unsigned	Sensor operating days or date at SPAN adjustment [2].	Value <= 10958: Operating days (no date available) Value > 10958: Date (days since 1.1.1980) e.g. 1 = adjusted on 1st day of operation (0= not adjusted)		
0x031A	2	Signed	Signal value at ZERO adjustment [2].	100 = 1% of the nominal delta		
0x031B	1	Signed	Signal value with SPAN adjustment [2]	10000 = 100% of the nominal delta		

5.3.2 Write Multiple Registers

Only three registers can be written to set the telegram signature. The same register is always accessed within internal memory, there is only one signature for all accesses, regardless of whether they are read or write access.

In addition, a time stamp can be added to the transmitter. This function can only be accessed with the write function. Only the two time stamp registers can be written at any one time.

REGISTER MAP - WRITE MULTIPLE REGISTERS 16 (0x10)					
Register Address	Number of Transferable Registers	Register Type (16 bit)	Parameter	Statement	
0x0000	6	Unsigned	Signature	Signature for telegram identification (for monitoring the telegram sequence).	
0x0001	5	Unsigned	Time stamps (seconds since 01.01.1980)	Bits0:15 from 32-bit time stamp e.g.:02.09.2015 19:21:16 = 1125688876s= 0x4318a62c	
0x0002	4	Unsigned		Bits16:31 from 32-bit timestamp e.g.:02.09.2015 19:21:16 = 1125688876s= 0x4318a62c	
0x0003	3	Unsigned	Averaging interval 1	Interval 1 for measured value averaging in minutes. A value change restarts the averaging filter. The value "0" deactivates averaging for the alarm, instead the current gas value is used.	
0x0004	2	Unsigned	Averaging interval 2	Interval 2 for measured value averaging in minutes. A value change restarts the averaging filter. The value "0" deactivates averaging for the alarm, instead the current gas value is used.	
0x0005	1	Unsigned	Averaging interval 3	Interval 3 for measured value averaging in minutes. A value change restarts the averaging filter. The value "0" deactivates averaging for the alarm, instead the current gas value is used.	

5.3.3 Read/Write Multiple Registers

The read/write function can only access the registers described above in read **and** write mode. It has no further functional scope beyond that.

5.4 Unique Telegram Identification

For unique telegram identification, a signature can be transmitted as register content in conjunction with the Function Code for reading and writing registers (**Read/Write Multiple Register 0x17**) for the standard Modbus protocol. Therefore, the master (e.g. GMA200) sends a signature with the request for writing the signature request and simultaneously requesting this signature in addition to other register values from the transmitter, which are then sent back to the master as a response. The signature, which therefore is transmitted by the Master, can be counter value, for example, which gets incremented before every request. By comparing the sent signature with the signature received from the transmitter, the master can then recognize whether the received telegram is the response to the sent request.

All data segments begin with a signature register, which can be read along with the attached data register of the single segments. The same signature is accessed in the signature register of the different segments. However, this signature can only be described by a single register with the address 0x0000 (see section 5.4 "Register Map").

After the signature has been read out, it is automatically decremented within the transmitter. If the master repeatedly accesses the signature and data segments in read-only mode (**Read Input Registers 0x04**), **the** automatic signature decrementation allows the master to recognize that the transmitter responses are continuously generated and transmitted telegrams.

The telegram identification described above requires, that only entire data segments with signatures are read from the respective start address.

5.5 Chronological Sequence of the Measured Value Enquiry

The configuration parameters only need to be read out after system startup or after configuration changes, otherwise this data does not change. The parameters should also be read out after longer communication interruptions, as changes made during this time cannot be detected. The three parameter segments (register address ranges: 0x0000..., 0x0200... and 0x0300...) must be read out one after the other.

The status information and measured values are then read out together in cycles. The cycle time should not be less than one second, because this is the acquisition cycle time of the transmitter-internal measured value.

If the transmitter changes to service mode during the cyclic status and measured value enquiry, or if the transmitter cannot be reached or is in the start-up phase due to a restart, then status and measured values do not need to be read out any longer as the integrity of the measured values can no longer be guaranteed due to possible configuration changes. In this case, only the status has to be read out until the transmitter has left the service mode or the startup phase again or the transmitter can be reached again.

Example for Data Query	Bus Address (# 1)	Function Code	Index Address (R)	Index Number (R)	Index Address (W)	Number of Registers (W)	Byte Number (W)	Index Content (W) (# 2)	Modbus Checksum
Identification Parameter	0x01	0x17	0x0000	0x000E	0x0000	0x0001	0x02	0x0000	CRC16
Status and Measured Values	0x01	0x17	0x0100	0x0009	0x0000	0x0001	0x02	0x0001	CRC16
Measuring Range & Alarm Thresholds	0x01	0x17	0x0200	0x000B	0x0000	0x0001	0x02	0x0002	CRC16
Calibration and Adjustment Data	0x01	0x17	0x0300	0x001C	0x0000	0x0001	0x02	0x0003	CRC16

Comments to **#1**: Bus address of the transmitter (variable);

to #2: This signature should always change (variable).

6. GfG coding tables

6.1 Unit table

No.	Abbreviations	Designation	No.	Abbreviations	Designation
1	ppm	Part per million	24	°F	degrees Fahrenheit
2	vol%	percentage by volume	25	g	gram
3	%UEG (%LEL)	lower explosion limit	26	kg	kilogram
4	ppb	Part per trillion	27	Pa	Pascal
5	ug	micrograms	28	kPa	kilopascal
6	mg	milligram	29	bar	bar
7	%	percentage	30	psi	Pound per square inch
8	%%	per mil	31	S	second
9	m/s	meters per second	32	min	minute
10	°C	degree Celsius	33	kB	kilobyte
11	mV	millivolts	34	MB	megabyte
12	V	volt	35	GB	gigabyte
13	mA	milliamper	36	mg/l	Milligrams per litre
14	А	amp	37	slpm	Standard litres per minute
15	ohm	ohm	38	uA	microampere
16	dig	digit	39	W	watt
23	earth	degree			

6.2 Table of Gas Types and Measured Variables

No.	Sum Formula	Gas Designation	No.	Sum Formula	Gas Designation
1	C ₃ H ₆ O	acetone	34	$C_3H_6CL_2$	dichloropropane
2	C_2H_3N	acetonitrile	35	$C_4H_{11}N$	diethylamine
3	C_2H_2	acetylene	36	C ₂ H ₆ O	dimethyl ether
4	C_3H_3N	acrylonitrile	37	C ₃ H₅CLO	epichlorohydrin
5	C₃H₀N	aminopropane	38	Nat.gas	natural gas
6	NH3	ammonia	39	C_2H_6	ethane
7	$C_{5}H_{12}O$	amyl alcohol	40	C ₂ H ₆ O	ethanol
8	gasoline	Petrol 60/95	41	$C_4H_8O_2$	ethyl acetate
9	gasoline	Petrol 80/110	42	C ₂ H ₆ O	ethyl alcohol
10	gasoline	Petrol 100/140	43	C_2H_4	ethylene
11	C ₆ H ₆	benzene	44	C_2H_4O	ethylene oxide
12	Cmb.gas	flammable gases and vapours	45	composite	FAM petrol 65/95
13	CBrF ₃	bromotrifluoromethane	46	composite	Aviation fuel 40/180
14	C ₄ H ₆	1,3-butadiene	47	CH2O	formaldehyde
15	C ₄ H ₁₀	n-butane	48	CHCLF ₂	R22 - Chlorodifluoromethane
16	C ₄ H ₁₀	i-butane	49	Не	helium
17	C ₄ H ₁₀ O	Butanol (n)	50	C ₇ H ₁₆	n-heptane
18	C ₄ H ₈ O	MEK (methyl ethyl ketone)	51	C ₆ H ₁₄	n-hexane
19	$C_{6}H_{12}O_{2}$	Butyl acetate (s)	52	C _{6H14}	i-Hexane
20	$C_{6}H_{12}O_{2}$	Butyl acetate (i)	53	C ₆ H ₁₂ O	hexanon
21	$C_4H_{10}O$	Butyl alcohol (n)	54	$C_6H_{12}O_2$	isobutyl acetate
22	C_4H_8	butene	55	CO ₂	carbon dioxide
23	CL ₂	chlorine	56	СО	carbon monoxide
24	CH₃CL	chloromethane	57	$H_2 + CH_4 + N_2 + CO +$	coke oven gas
25	HCL	hydrogen chloride	58	$N_2 + O_2 + CO_2 + \dots$	air
26	HCN	hydrogen cyanide	59	CH ₄	methane
27	C ₆ H ₁₂	cyclohexane	60	CH ₄ O	methanol
28	C_5H_{10}	cyclopentane	61	$C_3H_6O_2$	methyl acetate
29	C_3H_6	cyclopropane	62	CH₃OH	methyl alcohol
30	R12	R12 - Dichlorodifluoromethane	63	C ₆ H ₁₂ O	butylmethylketone
31	$C_2H_4CL_2$	dichloroethane	64	CH₃CL	methyl chloride
32	R21	R21 - Dichlorofluoromethane	65	CH_2CL_2	methylene chloride
33	CH_2CL_2	dichloromethane	66	C ₆ H ₁₂ O	MIBK (methyl i-butyl ketone)

Continuation see next page

No.	Sum Formula	Gas Designation	No.	Sum Formula	Gas Designation
67	C ₄ H ₈ O	ethylmethylketone	125	C ₄ H ₈ S	THT - Tetrahydrothiophene
68	C ₃ H ₈ O ₂	methyl glycol	126	VALLEY	ToxAlert
69	C ₅ H ₈ O ₂	methyl methacrylate	127	$C_4H_5F_5$	R365 - Pentafluorobutane
70	C ₄ H ₁₀ O	methylpropanol	128	$C_5H_{10}O_3$	ethyl lactate
71	CBrCLF ₂	bromochlorodifluoromethane	129	NH ₄ +	ammonium ion
72	C ₉ H ₂₀	n-Nonan	130	CCL₃F	R11 - Trichlorofluoromethane
73	C ₈ H ₁₈	Octane (i)	131	$C_3H_3F_5$	R245fa - Pentafluoropropane
74	C ₈ H ₁₈	Octane (n)	132	C_3H_4	prophet
75	C_5H_{12}	Pentane (i)	133	CS ₂	carbon disulphide
76	C_5H_12	Pentane (n)	134	BCL ₃	boron trichloride
77	$C_5H_{10}O$	pentanone	135	BF₃	boron trifluoride
78	C_5H_{10}	pentences	136	CH₃Br	bromomethane
79	$C_7H_{14}O_2$	pentylacetate	137	C ₄ H ₁₀ O	2-butanol
80	C_2CL_4	PER (perchloroethylene)	138	$CH_4 + CO_2$	landfill gas
81	C ₃ H ₈	propane	139	$C_2H_4F_2$	R152a - Difluoroethane
82	C ₃ H ₈ O	Propanol (i)	140	$C_4H_8O_2$	1,4-Dioxane
83	$C_5H_{10}O_2$	Propylacetate (i)	141	composite	Kerosene (180/220)
84	C ₅ H ₁₀ O ₂	Propylacetate (n)	142	CH₅N	methylamine
85	C ₃ H ₈ O	Propyl alcohol (n)	143	SiCL ₄	silicon tetrachloride
86	C ₃ H ₈ O	Propyl alcohol (i)	144	N ₂	nitrogen
87	C ₃ H ₆	propene	145	$C_2H_3F_3$	R143a - trifluoroethane
88	C ₃ H ₆ CL ₂	propylene dichloride	146	composite	diesel
89	O ₂	Oxygen	147	Mixture ($C_2HF_5 +$	R404A (refrigerant mixture R125+R143a+R134a)
90	SO ₂	sulphur dioxide	140	$C_2H_3F_3 + C_2H_2F_4$	
91	SF ₆	sulphur hexafluoride	148	Br ₂ VOC	bromine gas VOC
92 93	$\frac{H_2S}{H_2+CH_4+N_2+CO+\dots}$	hydrogen sulphide	149	VUC	
93 94	NO_2	town gas nitrogen dioxide	150	PID	PID (synonym for PID sensor)
94 95	NG ₂	nitrogen monoxide		Mixture	
96	C ₈ H ₈	styrene	151	Mixture ($C_2HF_5 + C_2H_3F_3$)	R507 (refrigerant mixture R125+R143a)
97	C2H2CL4	tetrachloroethane	152	$C_3H_6O_2$	ETF - ethyl formate
98	C ₇ H ₈	toluene	153	Ar	argon
99	$C_2H_3CL_3$	trichloroethane	154	C ₂ CL ₃ F ₃	R113 - Trichlorotrifluoroethane
100	C ₂ HCL ₃	TRI - Trichloroethylene		-23.3	Refrigerant R1234yf
101	CHF ₃	R23 - Trifluoromethane	155	$C_2H_3F_4$	(2,3,3,3-tetrafluoroprop-1-
					ene)
102	C ₄ H ₆ O ₂	vinyl acetate	156		R407C (refrigerant mixture
103	C ₂ H ₃ C _L	vinyl chloride		$+ C_2H_2F_4$)	R32+R125+R134a)
104		hydrogen	157	Mixture ($CH_2F_2 + C_2HF_5$)	R410A (refrigerant mixture R32+R125)
105	H ₂ +CO+	water gas	150		
106 107	C ₈ H ₁₀ O ₃	xylene ozone	158 159	NF ₃ pH	nitrogen trifluoride pH
107	COCL ₂	phosgene	1		redox
108	PH ₃	phosphine	160 161	redox TBM	TBM, tert-butylmercaptan
110	SiH ₄	silane	162	HBr	hydrogen bromide
111	AsH ₃	arsine			Refrigerant mixture (R125+)
112	CLO ₂	chlorine dioxide	163	R438A	R134a+R32+nButane+Isopentane)
113	B ₂ H ₆	diborane	1		
		R123 -	164	R449A	Refrigerant mixture (R134a+) R125+R1234yf+R32a)
114	C ₂ HCL ₂ F ₃	Dichlorotrifluoroethane			
115	C ₄ H ₁₀₀	diethyl ether	165	R1234ze	Refrigerant HFO-1234ze
116	N ₂ O	nitrous oxide			(1,3,3,3-tetrafluoropropene)
117	$C_2H_4O_2$	acetic acid	225	Sig.	beacon
118	F ₂	fluorine	226	Q	flow
119	HF	hydrogen fluoride	227	Р	pressure
120	GeH ₄	germanium hydrogen	228	m	mass
121	N ₂ H ₄	hydrazine	229	Wdir	wind direction
122	C ₆ H ₆ O	phenol	253	Т	temperature
123	C ₃ H ₆ O	propylene oxide	254	pair	wind velocity
124	$C_2H_2F_4$	R134a - tetrafluoroethane	255	rH	relative humidity

7. References						
[MoSL]	MODBUS over Serial Line - Specification & Implementation Guide V1.0; http://www.modbus.org					

[MAPS] MODBUS Application Protocol Specification V1.1; http://www.modbus.org

Smart GasDetection Technologies

218-000.19_BA_TRM22-Modbus. docLast Updated: 09.November 2018Firmware version 2.09Subject to change without notice