G460 PID sensor performance and maintenance

GfG Instrumentation, Inc. 1194 Oak Valley Drive, Suite 20 Ann Arbor, Michigan 48108

Toll free (USA and Canada): (800) 959-0329

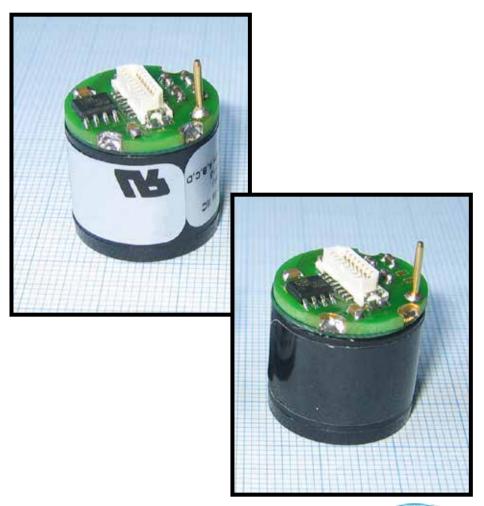
Direct: +1-734-769-0573

Service e-mail: <u>service@gfg-inc.com</u>

Internet: www.gfg-inc.com

Technical documentation and download site:

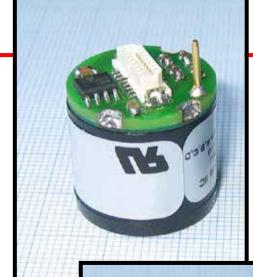
www.goodforgas.com


WARNING:

by authorized

personnel

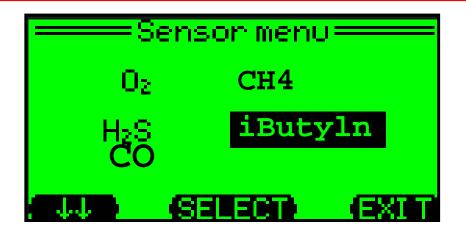
G460 Smart Sensor PID


- PID Smart-Sensor
 - Broad range VOC measurement
 - Extremely sensitive
 - Available in two ranges:
 - 0.5 2,000 ppm (Standard PID sensor)
 - 0.1 500 ppm (Optional high resolution PID sensor)



PID range and resolution

- Two versions of the PID sensor available for G460:
 - "Standard" PID provides 0.5 ppm resolution over 0 2000 ppm (isobutylene scale)
 - "High Resolution" PID provides 0.1 ppm resolution over 0 500 ppm (isobutylene scale)
- "VOC" choice allows the user to specify custom correction factor for a gas not included in the standard on-board library
- The full range for the gas selected depends on the relative response of the sensor to the target gas compared to isobutylene
 - For instance, when "NH3" (ammonia) is selected, because of the lower relative response to ammonia compared to isobutylene, the full range is expanded from 0 – 2000 (iso scale) to 0 – 6000 ppm (NH3 scale)



PID sensor menu

- § PID sensor choices include "Range and Gas"
- § Use to choose correction factor for new gas from PID library
- § PID readings displayed in measurement units of gas selected
- Name of gas selected will appear in the sensor menu PID position
- § In normal operation screen will show name of new gas


```
= Range and Gas = 0-2000ppm iButyln 0-2000ppm Gasolin 0-2000ppm MIBK 0-2000ppm Acetone 0-2000ppm Deether 0-2000ppm Propyln EXIT
```


PID sensor "Gas and Unit" library choices

0 - 2000

0 - 2000

0 - 2000

0 - 1500

0 - 1500

0 - 1000

0 - 1000

0 - 1000

0 - 1000

0 - 800

0 - 800

0 - 6000

0 - 6000

0 - 6000

0 - 6000

0 - 3000

0 - 3000

0 - 3000

0 - 3000

0 - 3000

0 - 3000

0 - 500

0 - 500

0 - 500

0 - 375

0 - 375

0 - 250

0 - 250

0 - 250

0 - 250

0 - 200

0 - 200

0 - 1500

0 - 1500

0 - 1500

0 - 1500

0 - 750

0 - 750

0 - 750

0 - 750

0 - 750

0 - 750

PID Gas List Abbreviations	Common Name	Range with 0 – 2000 ppm full range PID (ISO)	Range with 0 – 500 ppm full range PID (ISO)
iButyIn	Isobutylene	0 – 2000	0 – 500
VOC	Generic VOC with user assigned CF	0 – 2000	0 – 500
Gasolin	Gasoline	0 – 2000	0 – 500
MIBK	Methyl-iso-butyl-ketone	0 – 2000	0 – 500

Acetone

Deether

PropyIn

MEK

Diesel

TrClEyn

Benzene

Toluene

Xylene

Styrene

Jetfuel

nButnol

EtActat

NH3

nHexane

cHexane

VyChIrd

MeBromd

nNonane

Octane

Heptane

Acetone

Diethylether

Methyl-ethyl-ketone

Trichloroethylene

Propylene

Diesel

Benzene

Toluene

Xylene

Styrene

Jet fuel (JP-8)

Ethyl acetate

Cyclo hexane

Methyl bromide

Vinyl chloride (VCM)

n-Hexane

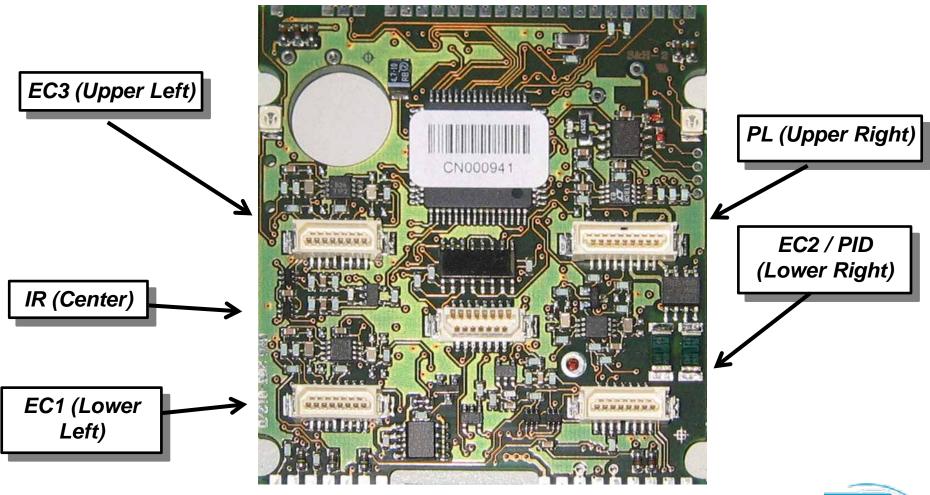
Ammonia

n-Nonane

Octane

Heptane

n-Butyl-alcohol


G460 Interchangeable Smart Sensors

- Five Smart Sensor positions on PCB:
- All you need to do is plug the sensor into a position designed for that type of sensor
 - EC 1: COSH
 - EC 1, 2, 3: CO, H2S, O2, NH3, SO2, H2, PH3, HCN
 - EC 2, 3: NO, NO2, CL2, HCL, ETO, O3, ClO2, HF
 - EC 2: PID
 - *PL:* 1 100% LEL "pellistor" sensor
 - IR: 0.1 5.0 Vol % CO2; 0 100% LEL combustible; 0 100% vol combustible

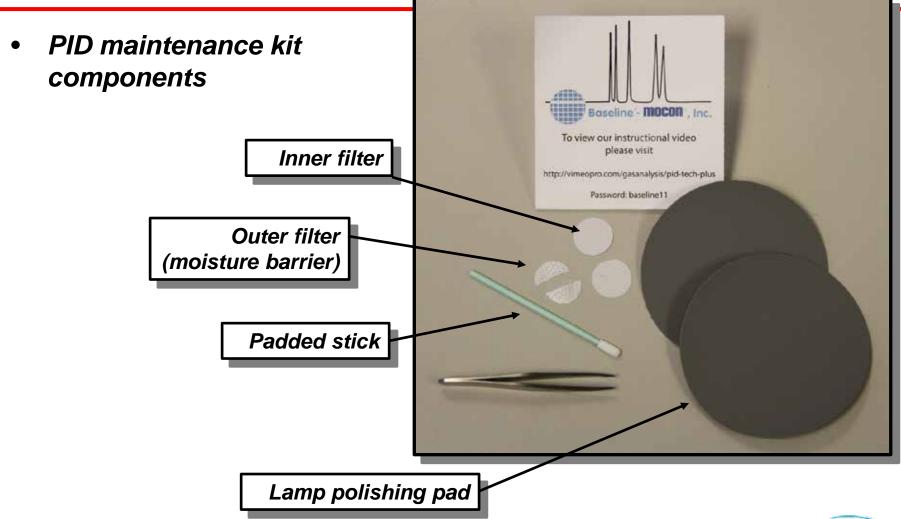
G460 Main PCB: Five Smart Sensor Positions

- The G460 PID is protected by both external and internal filters
 - Because gas diffuses into and out of the sensor (rather than using a pump to pull the atmosphere across the lamp and electrodes) the system is less prone to particulate contamination

Note: The PID lamp and electrodes should only be cleaned when needed!

- The primary symptoms that indicate the need to clean the lamp are:
 - 1. Unstable readings
 - 2. Oversensitivity to humidity
 - 3. Failure to calibrate

- The following slides show the step-by-step procedure for cleaning the G460 PID
- The manufacturer of the PID lamp (Baseline-MOCON, Inc.) has also posted a training video at the following link:


http://vimeopro.com/gasanalysis/pid-tech-plus

The password is: baseline11

 G460 PID cleaning kit (PN 7740-026): includes replacement filters, lamp polishing pads, tweezers and compressor stick

Note: The appearance of the Baseline-MOCON "PID Plus" sensor in the video is slightly different from the GfG PID version. The procedure for disassembly and cleaning the lamp is exactly the same, however.

G460 PID Maintenance Cautions

 Wear gloves when handling or disassembling PID

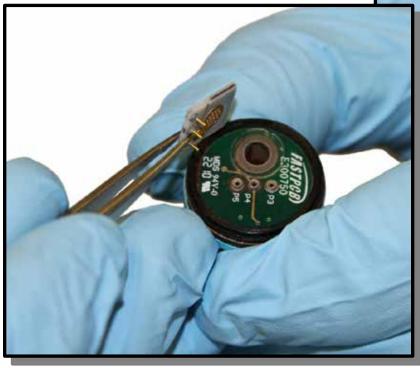
Note: Direct contact between fingers and PID lamp, electrodes and other components can leave oils and contaminants behind that can degrade performance

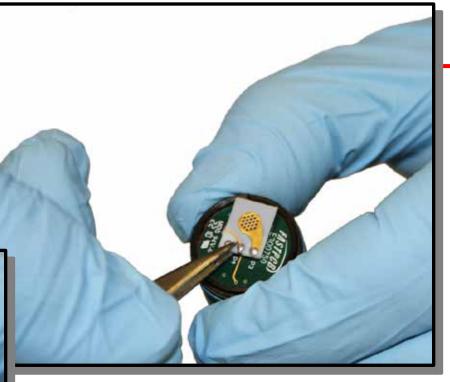
- Make sure instrument is turned off!
- Remove battery, open housing, and CAREFULLY remove main board and display assembly exposing sensors
- Remove PID sensor

 Use tweezers to pry the top off of the sensor

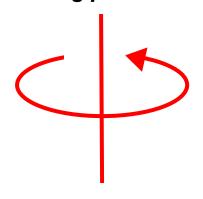

 Position the tweezers next to the cap opening

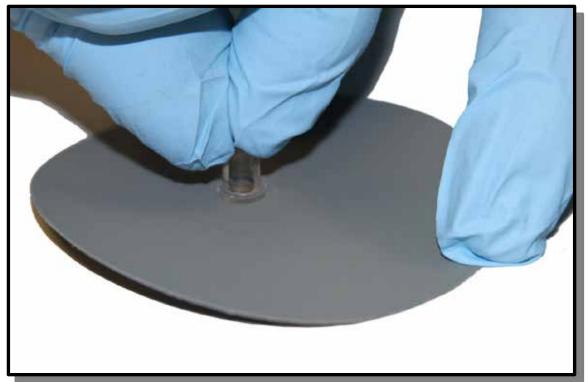
Remove the sensor cap

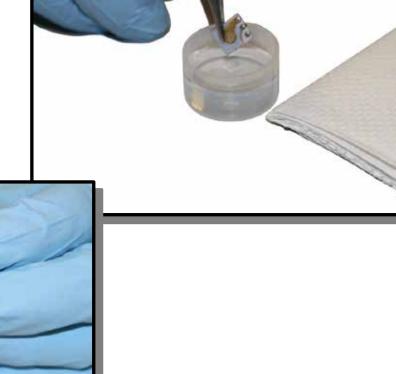


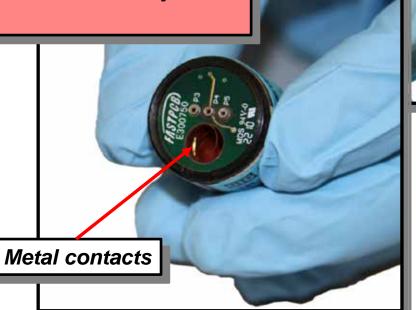

- Remove filters (inner and outer)
- Remove spacer

- Gently remove sensor PCB
- Grip at back of board (near pins)


- Use tweezers to GENTLY pry the lamp out of the sensor
- Do not touch window or body of lamp with naked fingers




 Use circular motion to polish face of lamp window with polishing pad


- Clean any lamp, pin, or electrode PCB surfaces that have come into contact with naked skin with alcohol before reassembling
- Make sure that all components are COMPLETELY air-dried before reassembly
- Do not use blowers or heated air sources to speed up drying!

 Insert lamp back into PID sensor assembly


> NOTE: Metal pads in PID lamp MUST line up with contacts in socket of sensor assembly

Metal pads

• Use padded stick to press lamp into place

- Reassemble:
 - Sensor PCB
 - Spacer
 - Filters (2)
 - Sensor cap
- Plug PID sensor back into instrument

Calibrate the PID sensor before returning the G460 to service!

Returning the instrument to service

- Calibrate ALL sensors in the instrument (whether or not they have been changed) before returning the instrument to service
- It is best to let new sensors stabilize in the instrument for 30 minutes prior to calibration

Questions?

