AIH 2018 AIH CEEXP

Not just a conference... an EXPerience

PDC 704: Methods and Applications for Chemical Detection in Real Time

Philadelphia, PA | May 21-23 | PDCs: May 19, 20 and 24

The Premier Conference and Exposition for Occupational and Environmental Health and Safety Professionals www.AIHce2018.org

AIHA Proprietary Interest and Disclosure Statement

AIHA must ensure balance, independence, objectivity, and scientific rigor in its individual and co-sponsored educational events. Instructors are expected to disclose any significant financial interests or other relationships with:

- manufacturers of any commercial products
- providers of commercial services discussed
- any commercial supporters

Significant financial interests or other relationships include such things as grants, research support, employee, consultant, major stockholder, speakers' bureau member, etc. The intent of this disclosure is not to prevent an instructor from presenting, but to provide participants with information to base their own judgments. It remains up to the participant to determine whether an instructor's interests or relationships may influence the presentation.

PDC Evaluations

We sincerely appreciate your feedback! Your suggestions and comments are used to improve our courses each year.

The URL for your PDC evaluation is:

https://www.surveymonkey.com/r/18PDC704

Access PDC evaluations:

- From the LIVE link in your eHandout (above)
- Using the AIHce mobile app.
- Using the link emailed to you at the course conclusion
- Via your smartphone
- On any laptop or tablet

Handout Information

All Professional Development Course handouts are produced by AIHA as submitted by the instructors, and in the instructor determined order.

AIHA does not change or modify handout content; we may adjust images to improve layout and clarity.

Handout materials are the property of the instructor(s) and may not be replicated or distributed without the instructor's approval.

Surveys will remain open until June 4th, 2018

Important Information Regarding Course Completion and Proof of Attendance

Educational transcripts will be available July 13, 2018

Member and nonmember educational transcripts will have both certification information and contact hours for PDCs attendance uploaded.

Access your transcript online at:

https://www.aiha.org/

Educational transcripts:

- Provide a full audit of the last 7 years of Education Events by AIHA
- Supply AIHce and PDC certification information
- List AIHce and attendance information for weekday sessions
- Access and update your AIHA and AIHce continuing education records online any time, from anywhere!
- Review educational credits (CM contact hours) awarded by AIHA.
- Update and add course records from other organizations to your transcript, for easy record keeping
- Track training and professional development contact hours
- Print a complete history, as often as you like 24/7

Review your educational history online with AIHA's Educational Transcripts

If you have any questions regarding accessing your educational transcript please contact:

Erin Breece, Program Director, Education, ebreece@aiha.org, 703-846-0749.

Note: AIHA does not issue hard copies of certificates of completion. Educational Transcripts do not reflect speakers/presenters instruction credits.

PDC 704

Methods and Applications for Chemical Detection in Real Time

Intermediate | Competent, Experienced, Novice Saturday & Sunday, May 19-20 | 8:00 AM – 5:00 PM Credits: 14 CM Credit Hours

Topics

Exposure Assessment Strategies, Real-Time Detection Systems, Sensor Technologies

Description

The PDC is targeted towards IH, safety, and emergency response personnel who use or may be called on to use field portable detection and identification tools, or professionals who may need to understand data produced by such tools. Discussion on intra-day exposure variability and situations where knowledge of rapidly fluctuating contaminant concentrations may be important to correctly assess exposures will be presented. The operating principles and key limitations of commonly-used detection instruments will be described in detail. How such instruments may be integrated into emergency response protocols required by the OSHA Hazardous Waste Operations and Emergency Response (HAZWOPER) standard will be discussed. The hands-on portion of the PDC will include various instruments and associated data processing systems. Expert case studies presented will demonstrate how real-time chemical detection has been effectively used to answer important human exposure questions.

Prerequisites

IH-level knowledge of chemistry, interest in field-portable detection tools and the exposure assessment process

Value Added

Participants will receive case studies, flow charts and hands-on experience with portable real-time detection instruments.

Outcomes

Upon completion, participants will be able to:

- Create a field detection plan for hazards.
- Apply knowledge of real-time detection tool limitations.
- Use the hands-on experience to operate a variety of portable real-time detectors.
- Describe scenarios where field-portable detection tools are helpful.
- Select the best field detection and identification tool for a given scenario.
- Describe the toxicological relevance of intra-day variability.
- Use intra-day variability information to evaluate the need for or adequacy of control measures.
- Use correct approaches to augment traditional air samples with real-time detection data.
- Train another H&S professional on the roles for real-time detection instruments.

Outline

- Introduction
- Outline Potential Exposures
- Available Detection Tools AIHA 2018 - PDC 704

- Sensors to Guide Sampling for Exposure Assessment
- Operating Principles of Various Detection Systems
- Detection Systems in HAZWOPER Operations
- Interactive Exposure Assessment Scenario Discussions/Exam
- Hands-on Demonstrations and Use of Various Instruments

Transfer of Knowledge

Instructors will evaluate participants' understanding of the materials presented based on:

- Hands-on demonstrations and practicum
- Post course test

Instructors

Philip Smith, PhD, ClH, U.S. Department of Labor – OSHA, Sandy, UT. Jim Cornish, Gasmet Technologies, Inc., Vancouver, BC, Canada. Robert Henderson, MBA, GfG Instrumentation, Inc., Ann Arbor, MI. William Mills, Northern Illinois University, Dekalb, IL.

	Learning Objectives
Upon Completion the participant will I	be able to:
 Create a sound field detection plan availability, and operating principle and identification technologies 	n for hazards based on costs, es of important field detection
2. Correctly apply knowledge of real- exposure assessment problems	time detection limitations to
 Correctly use the basic functions of detectors, and colorimetric, ioniza detection tools with hands-on exp technologies 	of portable real-time aerosol tion, and absorbance-based erience for most of these
 Correctly employ electrochemical technologies and technologies use flammability/explosivity 	sensor detection ed for detection of
 Describe scenarios where field-po detection tools are helpful, and lin this detection tool 	rtable gas chromatographic nitations to the usefulness of
Select the best field detection and scenario based on capabilities and	identification tool for a given I limitations
	VAIHA
2018 AIHce PDC 704: Chemical Detection in Real Time	Slide 2 Protecting Worker Health

Learning Objectives (Continued)	
Upon Completion the participant will be able to:	
7. Describe the toxicological relevance of intra-day variability related to airborne exposure concentrations in the case of both fast acting and slow acting chemical and aerosol hazards	
8. Use knowledge of information regarding intra-day variability of airborne exposure concentrations to evaluate the need for or adequacy of control measures	
9. Use technically correct approaches to augment collection of traditional air samples with real-time detection data	
10. Teach another health and safety professional the most suitable roles for real-time detection systems and instruments in comprehensive exposure assessment	
2018 AlHce PDC 704: Chemical Detection in Real Time Slide 3 Protecting Worker Health	

	Course Outline, Day 1
I.	Introduction
П.	Outline potential exposures
<i>III.</i>	Discussion of the overall range of available detection tools, capabilities and limitations, costs, and training needs
IV.	Discussion on types of work processes where substantial intra-sampling period exposure concentration variability is expected, and the inadequacy of TWA sampling to identify exposure "peaks and valleys"
V.	Discussion on the use of sensors to guide sampling for traditional exposure assessment (i.e., guidance to inform hanging pumps to answer difficult questions or select most likely exposed workers for traditional sampling)
VI.	Discussion of operating principles, detection systems, and case studies for:
	(1) Colorimetric detectors
	(2) Electrochemical sensors
	(3) Flame ionization detector/miscellaneous detectors
	(4) Aerosol monitors
VII	Hands-on time (aerosol only)
2018 AIHce	PDC 704: Chemical Detection in Real Time Slide 4 Protecting Worker Health

		Course	Outline, Day 2
1. 11. 111. 17.	Discussion of operating principles, detection (1) Combustibility/explosivity meters (2) Photoionization detector (3) FTIR (4) Field-portable gas chromatography and I Role of detection systems in HAZWOPER ope Interactive exposure assessment scenario dis "Hands-on" time	systems, and case studies fo mass spectrometry erations scussions/exam	r: ⋘AIHA
2018 AlHce F	DC 704: Chemical Detection in Real Time	Slide 5	Protecting Worker Health

	"Important li	nstrumentatio	on and Methods"
<u>Chapter</u> 1. Intr	r oduction		Important Instrumentation and Methods
2. The Det Ass	e Importance of Real-Time and Near Real-Tin ection Instrumentation for Human Exposure sessment	ne and a second s	for the Detection of Chemicals in the Field
3. Col	orimetric Detection methods and Devices		
4. Pho	otoionization		Editard by Philip A. Smith, Hills Con Graphicy W. Court, Hills
5. Sur for	face Acoustic Wave (SAW)-Based Instrumer Field Detection of Gases and Vapors	ntation	●AIHA
6. Ion	Mobility Spectrometry	and the second second	
7. Spe	ecialized Detectors		
8. Fiel for	ld-Portable Fourier Transform (FTIR) Spectr Gas and Vapor Analysis	oscopy	
9. Fiel	ld-Portable Gas Chromatography		
10. Ma	ss Spectrometry		
11. Sol	id Phase Microextraction		
12. The Des Exp	e Development and Application of Thermal sorption - Gas Chromatography for Personal sosure Assessment and Field Analysis		≪ AIHA
2018 AlHce F	DC 704: Chemical Detection in Real Time	Slide 8	Protecting Worker Health

Need for Sophisticated Technol	ology vs. Availability
For airborne chemical exposure	
<u>Simple:</u> handheld detectors, e.g. PID, electrochemica detectors –simple to use, but require you to have a g faced with in order to provide good information	al, or length-of-stain tube lood idea of what you're
<u>Complex:</u> a spectrometric method such as mass spe separation step such as gas chromatography (GC-M of unknown compounds in many instances –very ex trained and experienced operators; cannot be overel expensive! For air samples, concentration (often a s desorption methods (either heat or solvent) are need multi-step process -gas phase FTIR instrument is les separation	ectrometry, along with a S) can allow identification pensive, requires well- mphasized very orbent tube or trap) and led, making GC analysis a ss complex, but no analyte
2018 AIHce PDC 704: Chemical Detection in Real Time Slide 10	Protecting Worker Health

		E	xample Equipmer	nt Details	
Equipment type/cost	Sample type	Operating cost	Training cost	Limitations	
Level 2 PID, \$2.5k (detect/quantify gases/vapors)	gas/vapor	low	low	must know chem. identity, not sensitive @ IDLH for extremely toxic chemicals; doesn't detect analytes w/ high ionization energy	
Level 3 Portable GC-MS, \$100k+ (ID, even trace components)	organic solids, liquids, gases, vapors	high	high (approaches full-time commitment)	must be set up for specific analyte class; volatility-limited	
2018 AlHce PDC 704: Chemical Detection in Real Time Slide 11					

Early real-time colorimetric detection
N.G. White: Hydrogen Cyanide as an Industrial Hazard: Methods of Detection and Control. Industrial Hygiene Quarterly 9:81-84 (1948). With regard to an early real-time colorimetric detection
system for HCN (indicator reagent in a liquid matrix)
"The color change during the sampling period in concentrations of 40 ppm or under gives results well within 10% error and enables an individual to safely enter an area of unknown concentration <u>if he</u> <u>holds his breath during the exposure.</u> If after sampling 100 cc he can detect no color change he may resume breathing. If 200 cc does not develop the endpoint, <u>he can advance into the area and</u> <u>remain there safely for five minutes.</u> "
(emphasis added)
2018 AlHce PDC 704: Chemical Detection in Real Time Slide 25

Target Tissue/Receptor Concept
The overall key concept of toxicology is the <u>Dose-Response relationship</u> The four key concepts of toxicokinetics are <u>Absorption, Distribution,</u> <u>Metabolism, Excretion</u> We do not measure absorption directly, but we measure <u>Exposure</u>
Exposure X Absorption coefficient X Time = <u>Dose</u> Distribution of a xenobiotic occurs following absorption, including to <u>target tissues and/or receptors</u>
A response may be elicited if homeostasis is disrupted by the concentration of xenobiotic at the target tissue or receptor –e.g., CN ⁻ and CO both bind to mitochondrial cytochrome c oxidase, disrupting the ability of mitochondria to produce ATP during oxidative phosphorylation, affecting the CNS (homeostasis disruption)
2018 AIHce PDC 704: Chemical Detection in Real Time Slide 26

	8-Hr TWA (CO ₂ Sampling	: Brewery C	ellar Area
	Employee	Sample Time	Severity	TWA Overexposur e?
	1	435 minutes	0.84	No
	2	442 minutes	0.48	No
	1	405 minutes	0.75	No
	2	405 minutes	0.38	No
	1	442 minutes	0.49	No
	2	436 minutes	0.46	No
	3	374 minutes	0.35	No
	4	365 minutes	0.31	No
	5	420 minutes	0.47	No
2018 AlHce PDC 704: Chemical D	etection in Real Time	Slide 32	2 Prot	Ecting Worker Health

	Agent	Detector Tube	Sensitivity
 Nerve Agents Sarin, Tabun, Soman, VX 	Hydrocyanic Acid	Hydrocyanic Acid	1 ppm
Blister Agents	Phosgene	Phosgene	0.2 ppm
 Mustard Gas, Lewisite Blood Agents Hydrogen Cyanide, Cyanogen Chloride Phosgene, Cl₂ 	Lewisite	Organic Arsenic Cmpds. and Arsine	3 mg/m3 (org. arsenic)
	N-Mustard	Organic Basic Nitrogen Cmpds.	0.1 ppm arsine
	S-Mustard	Thioether	1 mg/m3

		Limitations
•	Should use manufacturer-specific pump	
•	Must read and follow instructions	
•	No alarms, no datalogger	
•	Correction may be needed for temperature, humidity, atm pressure	nospheric
•	Not permanent – stain can degrade in a matter of hours	
•	Limited shelf life	
•	Interfering chemicals	
	Positive – color change	
	Negative – inhibit color change	
•	May not be precise	
•	One time sample	
•	May be difficult to read	
		≪ AIHA
2018 All	Ice PDC 704: Chemical Detection in Real Time Slide 46	Protecting Worker Health

%CO ₂ Concentration/ Conditions	2L Tube % Difference Result		2H Tu Differ Resu	2H Tube % Difference Result	
0.48/dry	0.46	-4.3	0.46	-4.3	
0.48/humid	0.47	-2.1	0.59	23	
0.84/dry	0.75	-11	0.81	-3.6	
0.84/humid	0.88	4.8	0.93	11	
<u>3.67/dry</u>	3.3	-10	3.1	-16	
3.62/humid	3.4	-6.1	3.4	-6.1	
5.27/dry	4.5	-15	-		
5.20/humid	5.2	0	4.9	-5.8	
7.42/dry	-		5.9	-20	
7.44/humid	-		7.0	-5.9	
11.0/dry	-		9.3	-15	
11.4/humid	-		10.1	-11	

			EPA Method 21
•	Determination of Volatile Organic Co Specifies selection and use of moni monitoring "fugitive emissions" Detector types that may be used incl catalytic oxidation (pellistor), flame i absorption (IR), and photoionization TVOC readings expressed (or recalco units"	ompound Leaks tors for leak deter lude (but are not l onization (FID), ir (PID) ulated) in "carboi	ction and limited to) nfrared n units" or "FID
2018 Ali	Hce PDC 704: Chemical Detection in Real Time	Slide 57	Protecting Worker Health

	•	max IIII	Transition
Chromophore	Coefficient		
Mercurv	106	253.7	
Ozone	308.8	260	
Aromatic	2,864	262	pp*
Ketone C=O	14	253.7	n p*
-C=C-			pp*
Ether -O-	1,000	185	n p*
Amine -NH2	3,000	195	n p*
Carboxyl -COOH	60	205	n p*
Aldehyde -CHO	1000	210	n p*
	20	290	
Benzene	7,000	200	pp*
Toluene	2,875	262	pp*
Ammonia	5,000	190	

emical	PEL	Chem Tape Detection (LDL
iisocyanate - TDI	0.02 ppm (C)	0.0017 ppm
hosphine (PH ₃)	0.3 ppm	0.005 ppm
lydrazine (N₂H₄)	1.0 ppm	0.007 ppm
lydrogen fluoride HF)	3.0 ppm/6.0 ppm (C)	0.3 ppm
Phosgene (COCl ₂)	0.1 ppm	4.9 ppb

Slide 87

Protecting Worker Health

Capabilities:

- Paper tape detection has existed since the early 1970's
- Useful when other detection methods are not available ٠
- Individual Gas or Gas Family specific
 - Very few interferences
- Low detection limits/Rapid response •
 - Down to ppb levels as quickly as 10 seconds

Limitations:

- Different tape chemistry needed for specific chemicals
- Chemical tapes have limited shelf life •
- Exposure to direct sunlight, ambient air and elevated temperatures ٠ may decrease sensitivity of tape
- 9.5 14.5 pounds
- Not intended for combustible atmospheres

2018 AIHce PDC 704: Chemical Detection in Real Time

Questions? Thank you! Protecting Worker Health

2018 AIHce PDC 704: Chemical Detection in Real Time

Slide 88

	Overview
	Overview
Introduction	
Particle Size and Human Exposure	
Tyndall Meter	
Photometric technology	
Optical Particle Counting technology	
Condensation Particle Counting technology	
 Beta (β) Attenuation 	
TEOM - Tampered Element Oscillating Microbalance	
Micro Aethalometer	
Measuring Nanoparticle Exposure	
Summary	
Questions	
	<u> </u>
2018 AIHce PDC 704: Chemical Detection in Real Time Slide 104	Protecting Worker Health

	Photometric Technology
 Technology calibrated to an ISO standard dust, readings provide real time measurement 	Rayleigh Scattering Mie Scattering Mie Scattering, larger particles
 Assumes aerosol being measured is same mass as calibration dust 	Direction of incident light
 Can employ a correction factor if measured aerosol is consistent 	
 Known to be very precise and repeatable, but not always accurate 	
2018 AIHce PDC 704: Chemical Detection in Real	Time Slide 112 Protecting Worker Health

- Concentration is derived from the count rate and particle size is derived from the pulse heights
 Does NOT provide Mass information
- OPCs require fairly high power laser and an expensive optical system for particle detection
- OPC size bins can be arranged to simultaneously measure PM1.0, PM2.5 and PM10 eliminating the need for inlet conditioners like impactors
- Typical particle size range: 0.3 to 20 μm
- Typical concentration range:
- 2x10⁶ particles / ft³ (70 particles / cm³)
 OPCs come in hand held, table top and fixed
- OPCs come in nand neid, table top and fixed monitor configurations
- OPCs are calibrated with PSL beads of known refractive index
 - The measured size of an unknown particle is it's light scattering equivalent size compared to PSL
- Unlike photometers, OPC performance criteria are very well defined
- For OPCs, sensitivity can be increased if the sampling flow rate is reduced
- OPC manufacturers will have different models to choose from depending upon the application in question
- Unlike photometers, OPC flow rate is very critical for reasons stated above

- A continuous air sample is drawn into the CPC
- Particles pass through a saturator chamber mixing with alcohol vapor
- This mixture passes through a condensation chamber where the alcohol condenses onto the particles causing them to grow to an optically detectable size
- These particles pass thru a focused laser beam producing a flash of light
- These flashes of light are sensed by a photodetector
- Particle concentration is determined by counting the flashes of light
- If these particles were not grown to larger size particles they would not scatter enough light to be detected
- A CPC (a.k.a. Condensation Nuclei Counter) is an instrument for detecting and counting ultrafine aerosols that are invisible to OPCs and photometers
- Ultrafine aerosols are defined as particles less than 0.1 μm
- CPC units of measure are made in particles / cm³
- A CPC detects single particles, making it more sensitive than OPCs and photometers
- A CPC uses a method of condensation and growth of particles until they are large enough (at least 1.0 μm) to be detected by typical optical methods

	Photo	neter	OPC	CPC
Typical Size Range	0.1 to 1	0 μm (0.3 to 20 µm	0.02 to 1.0 µm
Measures Particle Mass	Ye	s	No	No
Measures Particle Size	N	0	Yes	No
Detects Single Particles	N	b	Yes	Yes
Typical Mass Concentration Range	0.01 to 10	0 mg/m ³	N/A	N/A
Typical Number Concentration,	N/	A	2 × 10 ⁶	1.5 × 10 ¹⁰ Particles/ft ³
Upper Limit			Fallicles/It*	
TABLE 2. Comparison Cf	nart—Appli	F cations (Ac	70 Particles/cm ³	500,000 Particles/cm ³ Practice)
TABLE 2. Comparison Ch	nart—Appli	F cations (Ac	70 Particles/cm ³ ccepted Best	500,000 Particles/cm ³ Practice)
TABLE 2. Comparison Ct	nart—Appli	F cations (Ac Photomete Good	70 Particles/cm ³ ccepted Best er OPC Good	500,000 Particles/cm ³ Practice) CPC Excellent
TABLE 2. Comparison Cf Indoor Air Quality - Conventional s Indoor Air Quality - Ultrafine partic	nart—Appli studies le tracking	F cations (Ac Photomete Good Poor	70 Particles/cm ³ Compared Best er OPC Good N/A	500,000 Particles/cm ³ Practice) CPC Excellent Excellent
TABLE 2. Comparison Ct Indoor Air Quality - Conventional s Indoor Air Quality - Ultrafine partic Industrial Workplace Monitoring	nart—Appli studies le tracking	F cations (Ac Photomete Good Poor Excellent	70 Particles/cm ³ ccepted Best Good N/A t Poor	500,000 Particles/cm ³ Practice) Excellent Excellent ¹
TABLE 2. Comparison Ct Indoor Air Quality - Conventional s Indoor Air Quality - Ultrafine partic Industrial Workplace Monitoring Outdoor Environmental Monitoring	nart—Appli studies ele tracking	F Cations (Ac Good Poor Excellent Good	Particles/cm ³ Particles/cm ³ Cepted Best Code Good N/A Poor Good Good Code Code Code Code Code Code Code C	500,000 Particles/cm ³ Practice) Excellent Excellent Excellent ¹ Excellent ¹
TABLE 2. Comparison Ct Indoor Air Quality - Conventional s Indoor Air Quality - Ultrafine partic Industrial Workplace Monitoring Outdoor Environmental Monitoring Emissions Monitoring	nart—Appli studies ele tracking	F Cations (Ac Good Poor Excellent Good Excellent	roperticles/cm ³ roperticles/cm ³ recepted Best Good N/A Poor Good Poor	500,000 Particles/cm ³ Practice) Excellent Excellent Excellent ¹ Excellent ¹ Good
TABLE 2. Comparison Cf Indoor Air Quality - Conventional s Indoor Air Quality - Ultrafine partic Industrial Workplace Monitoring Outdoor Environmental Monitoring Emissions Monitoring Respirator Fit Testing	nart—Appli studies sle tracking	Photomete Good Poor Excellent Good Excellent Excellent	ranucleone 70 Particles/cm ³ ccepted Best Good N/A Poor Good Poor Poor	500,000 Particles/cm ³ Practice) Excellent Excellent Excellent ¹ Good Excellent
TABLE 2. Comparison Cf Indoor Air Quality - Conventional s Indoor Air Quality - Ultrafine partic Industrial Workplace Monitoring Outdoor Environmental Monitoring Emissions Monitoring Respirator Fit Testing Fitter Testing	studies le tracking	Photometer Good Poor Excellent Good Excellent Excellent Excellent	Particles/cm ³ Particles/cm ³ ccepted Best Good N/A Poor Good Poor Poor E Poor	500,000 Particles/cm ³ Practice) Excellent Excellent ¹ Excellent ¹ Good Excellent Excellent

	Aethalometer
 Measurement Principle: Real- time analysis by measuring the rate of change in absorption of transmitted light due to continuous collection of 	Personal Exposure Monitoring
 aerosol deposit on filter Lightweight Self contained and wearable 	Cookstoves
 Low power consumption High sensitivity Fast (real-time) response 	Indoor Air Quality
 Adjustable sample flow rate Internal data logging and storage Simple data handling Easy to handle filter media 	Vertical Profiling
Optional PM2.5 size selective inlet for measurement in the breathing zone	

_		
		Summary
	 Photometers, OPCs and CPCs all have their uses Matching the appropriate technology to your application will provide the data you need Photometers measure mass to compare against air quality sta and guidelines OPCs measure particle number concentrations and size rang validate mechanical filtration systems and to help identify so CPCs measure ultrafine particle concentrations than cannot k measured by photometers or OPCs for existing applications a new applications that are now emerging as a new monitoring exposure metric 	andards es to urces and some and
	2018 AIHce PDC 704: Chemical Detection in Real Time Slide 126	V AIHA Protecting Worker Health

Thank You for Listening!
William J. Mills III Ph.D, M.Sc., CIH, C.Ch em. Assistant Professor Department of Technology Northern Illinois University Phone: (815) 753-5366 Email: <u>wmills11@niu.edu</u> http://www.niu.edu/ceet/faculty/Mills.shtml
 Acknowledgements: Earl Medina Greg Olson (TSI Incorporated) Sr. Industrial Hygienist Global Product Manager – Health and Safety Instruments Alan Matta (Thermo Fischer Scientific) Product Manager Rob Brauch (Casella CEL USA) Business Unit Manager
The mention of any manufacturer or trade name is for informational purposes only and does not constitute endorsement or approval!
2018 AIHce PDC 704: Chemical Detection in Real Time Slide 128

Heid	aht	Atm.	PC	\mathbf{y} All	con.
	5	Pressure		2	
feet	meters	mmHg	mmHg	kPa	% Vol
16,000	4,810	421.8	88.4	11.8	20.9
10,000	3,050	529.7	111.0	14.8	20.9
5,000	1,525	636.1	133.3	17.8	20.9
3,000	915	683.3	143.3	19.1	20.9
1,000	305	733.6	153.7	20.5	20.9
0	0	760.0	159.2	21.2	20.9
19.:	5% O ₂ a	t sea level =	18 kPa		
				Λ.	
	feet 16,000 10,000 5,000 3,000 1,000 0 19.	feet meters 16,000 4,810 10,000 3,050 5,000 1,525 3,000 915 1,000 305 0 0	feet meters mmHg 16,000 4,810 421.8 10,000 3,050 529.7 5,000 1,525 636.1 3,000 915 683.3 1,000 305 733.6 0 0 760.0	Integrit Pressure Pressure Pressure feet meters mmHg mmHg 16,000 4,810 421.8 88.4 10,000 3,050 529.7 111.0 5,000 1,525 636.1 133.3 3,000 915 683.3 143.3 1,000 305 733.6 153.7 0 0 760.0 159.2	Height Ham. Pressure H C_2 feet meters mmHg mmHg kPa 16,000 4,810 421.8 88.4 11.8 10,000 3,050 529.7 111.0 14.8 5,000 1,525 636.1 133.3 17.8 3,000 915 683.3 143.3 19.1 1,000 305 733.6 153.7 20.5 0 0 760.0 159.2 21.2 ISTRE level = 18 kPa

	Fuel cell type O ₂ sensor failure mechanisms
Lower current output:	
 All available surface of Pb anode converted to PbO₂ 	
Electrolyte leakage	and the second se
Loss of structural integrity of housing	OXYC
Desiccation	
Blockage of capillary pore	
 Electrolyte poisoned by exposure to contaminants 	
Higher current output:	and the second sec
 Short-term upward "ramping" readings due to cracks, tears or leaks allowing O₂ direct access to anode 	
 Contraction of "bubbles" in electrolyte due to rapid temp change 	
Readings do not change:	
 Loss (reduction) in platinum content in current collector and / or sensing electrode 	
 Partial occlusion of capillary pore 	
Test sensor before each day's use!	💞 AIHA
2018 AIHce PDC 704: Chemical Detection in Real Time	Slide 146 Protecting Worker Health

Concentration	Symptom
350 – 400 ppm	Normal background concentration in outdoor ambient ai
350 – 1,000 ppm	Concentrations typical of occupied indoor spaces with good air exchange
1,000 – 2,000 ppm	Complaints of drowsiness and poor air
2,000 – 5,000 ppm	Headaches, sleepiness, and stagnant, stale, stuffy air. Poor concentration, loss of attention, increased hear rate and slight nausea may also be present
>5,000 ppm	Exposure may lead to serious oxygen deprivation resulting in permanent brain damage, coma and ever death

	8-Hr TWA	STEL	Ceiling	DOCOMENY DEL		UP.
Federal USA OSHA PEL	50	NA	NA	This is the This is the orl IDLH value, an	revised (1994) IDLH ginal (before 1994) id the value that uses to cite	value.
State OSHA (1989) PEL (NIOSH REL)	25 ppm	35 ppm	NA	Ammonia	Tati da Patri are arti per 500 ppm	300
TLV	25 ppm	35 ppm	NA	Ammonia	600 ppm 300 ppm	

	Gas	Formula	Sensor model	Resolution	Range(s)
Available clostrochemical concern	Ammonia	NH ₃	NH3 3E 5000 SE	1.0 ppm 5.0 ppm 10.0 ppm	0 - 200 ppm 0 - 500 ppm 0 - 1,000 ppm
Available electrochemical sensors,	Arsine	AsH ₃	AsH3 3E 1 F LT	0.03 ppm	0 - 1.0 ppm
standard ranges and resolution	Carbon monoxide	со	4CM	0.1 ppm 1.0 ppm 1.0 ppm	0 - 300 ppm 0 - 500 ppm 0 - 1,000 ppm
More types of EC sensors	Carbon monoxide (CO-H)	co	2CF	1.0 ppm 1.0 ppm 1.0 ppm	0 - 500 ppm 0 - 1,000 ppm 0 - 2,000 ppm
available every year, both for	CO / H ₂ S	CO H ₂ S	4COSH	CO: 1.0 ppm H2S: 0.2 ppm	0 to 500 ppm 0 to 100 ppm
individual toxic cases as well	Chlorine	Cl ₂	CI2 3E 50	0.1 ppm	0 - 10.0 ppm
	Chlorine dioxide	CIO ₂	CIO2 3E 10	0.1 ppm	0 - 2.0 ppm
as sensors designed to detect a	Diborane	B ₂ H ₆	B2H6 3E 1 LT	0.03 ppm	0 - 1.0 ppm
range of toxic or combustible	Ethylene oxide (EtO)	C ₂ H ₄ O	ETO-A1	0.1 ppm	0 - 20 ppm
gases	Fluorine	F ₂	F2 3E 1	0.02 ppm	0 - 1.0 ppm
gueee	Hydrazine	N ₂ H ₄	N2H4 2E 1	0.01 ppm	0 - 1.0 ppm
	Hydrogen	H ₂	4HYT	1.0 ppm	0 - 2,000 ppm
	Hydrogen	H ₂	H2 3E 4%	0.01 % vol.	0 - 4.0% vol.
	Hydrogen bromide	HBr	HCI/HBr 3E 30	0.1 ppm	0 - 30 ppm
	Hydrogen chloride	HCI	HCI/HBr 3E 30	0.1 ppm	0 - 30 ppm
	Hydrogen cyanide	HCN	HCN 3E 30 F	0.2 ppm	0 - 50 ppm
	Hydrogen fluoride	HF	HF 3E 10 SE	0.1 ppm	0 - 10.0 ppm
	Hydrogen sulfide	H ₂ S	4HS-LM	0.1 ppm 0.2 ppm	0 - 100 ppm 0 - 500 ppm
	Methyl mercaptan	CH3SH	TBM 2E	0.3 ppm	0 - 25 ppm
	Nitric oxide	NO	4NT	1.0 ppm	0 - 100 ppm
	Nitrogen dioxide	NO ₂	NO2 A1	0.02 ppm 0.04 ppm	0 - 30 ppm 0 - 50 ppm
	Oxygen	0 ₂	02-A3	0.1% vol.	0 - 25.0% vol.
	Oxygen	02	40X-V	0.1% vol.	0 - 25.0% vol.
	Ozone	03	O3 3E 1	0.02 ppm	0 - 1.0 ppm
Bernard Barness and Ba	Phosgene	COCI2	COCI2 3E 1	0.02 ppm	0 - 2.0 ppm
	Phosphine	PH ₃	4PH - Fast	0.1 ppm 0.01 ppm	0 - 10.0 ppm
	Silane	SiH ₄	SiH4 3E 50 LT	1.0 ppm	0 - 40 ppm
	Sulfur dioxide	SO2	4S	0.04 ppm 0.1 ppm	0 - 10.0 ppm 0 - 50 ppm
	Tetrahydrothiophene (THT)	C ₄ H ₈ S	THT 3E	1.5 mg/m ³ (0.3 ppm)	0 - 100 mg/m ³ (0 - 50 ppm)

	Gas	Formula	Sensor (ppm)
	Acetaldehyde	сн,сно	со
Additional gases detectable by	Arsenic trichloride	AsCl ₃	HCI
Additional gases detectable by	Arsenic Trifluoride	AsF ₃	HF
means of relative response	Arsenic pentafluoride	AsF ₅	HF
	Boron trichloride	BCI ₃	HCI
	Boron tribromine	BBr ₃	HCI
 Electrochemical sensors are designed with 	Boron trifluoride	BF3	HF
specific usage requirements in mind	Bromine	Br ₂	Cl ₂
specific usage requirements in minu	Butanethiol	C ₄ H ₉ SH	TBM
	Carbonyl fluoride	COF ₂	HF
 The same manufacturer may offer multiple 	Chlorine dioxide	CIO ₂	CIO2 or O3
models of sensor for the detection of the same	Chlorine trifluoride	CIF ₃	CIO2 or HF
	Dichlorosilane	SiH ₄ Cl ₂	HCI
gas, but that are optimized for different sets of	Diethylether	C4H10	EtO
interferents and operating conditions	Disilane	Si ₂ H ₆	SiH4
······································	Disulfur decafluoride	S ₂ F ₁₀	HF
	Disulfur dichloride	S ₂ Cl ₂	HCI
 Thus, cross sensitivities may vary widely 	Formic Acid	нсоон	со
between different models and brands of sensors!	Germane	GeH ₄	PH ₃
	Germanium chloride	GeCl ₄	HCI
In addition, response values may differ at	Hydrogen bromide	HBr	нсі
· In addition, response values may unler at	lodine	l ₂	Cl ₂ or O ₃
concentrations other than the ones listed in	Isopropanol	(CH ₃) ₂ CHOH	CO w/o filter
product documentation	Methanol	CH3OH	CO w/o filter
pi cance a commentation	Phosphorous trichloride	PCI ₃	HCI
	Phosphorous pentachloride	PCI ₅	HCI
 Discuss with manufacturer BEFORE attempting 	Phosphoryl chloride	POCI ₃	HCI
to use relative response values to measure	Silicon tetrachloride	SICI4	HCI
	Stibine	SbH ₃	AsH3
additional gases	Thiophene	C ₄ H ₄ S	THT
	Tin tetrabromide	SnBr ₄	HBr
	Tin tetrachloride	SnCl ₄	HCI
	Tin tetrafluoride	SnF ₄	HF
	Titanium tetrachloride	TiCl ₄	HCI
	Trichlorosilane	SiHCl ₃	HCI
2018 AIHce PDC 704: Chemical Detection in Real Time Slide 177	Trichlortriazine	C ₃ Cl ₃ N ₃	HCI
	Trifiuorotriazine	C ₂ F ₂ N ₂	LHF

	Cro	oss sensitiviti 4S –	es of City Tec Rev. 2 sensol	hnology r at 20°C
	Relative responses of City Te dioxide (SO ₂) sensor at 20°C	chnology 4S – Re	v. 2 sulfur	
	Gas	Concentration used (ppm)	Reading (ppm SO2)	
	Carbon monoxide (CO)	300	< 1	
	Nitric oxide (NO)	50	0 to 5.0	
	Nitrogen dioxide (NO ₂)	6	< -10	
	Hydrogen sulfide (H₂S)	25	< 0.1	
	Chlorine (Cl ₂)	5	< -2	
	Ammonia (NH₃)	20	0	
	Hydrogen (H ₂)	400	< 1	1
	Hydrogen cyanide (HCN)	10	< 5	1
	Acetylene (C ₂ H ₂)	10	< 30	
	Ethene (C ₂ H ₄)	50	< 45	
2018 AlHce P	DC 704: Chemical Detection in Real Time	Slide 188	Protectin	AIHA° g Worker Health

05	SHA PEL				
	TWA STEL		Acceptable Ceiling (C)	Acceptable Maximum Peak above Ceiling for an 8-hour shift	
			Concentration	Concentration	Maximum duration
	NA	NA	20 ppm	50 ppm	10-minutes once only if no other measurable exposur occurs during shift
NI	OSH REL			•	
	TWA	STEL	Ceiling		
	10.0 ppm	15.0 ppm	NA		
20	09 ACGIH TLV			•	
	TWA	STEL	Ceiling		
	10.0 ppm	15.0 ppm	NA		
20	10 ACGIH TLV	•		•	
	TWA	STEL	Ceiling		
	1.0 ppm	5.0 ppm	NA		

	Fuel Gas		UEL (%VOL)
	Acetulano	22	0LL (//0VOL)
	Acetylene	2.2	05
Different gases have different	Ammonia	15	28
flammability ranges	Benzene	1.3	7.1
naminability ranges	Butane	1.8	8.4
	Carbon Monoxide	12	75
	Ethylene	2.7	36
	Ethylene oxide	3.0	100
Can Concentration	Ethyl Alcohol	3.3	19
Gas concentration	Fuel Oil #1 (Diesel)	0.7	5
Flammability	Hydrogen	4	75
Kange	lsobutylene	1.8	9
↑ ↑	Isopropyl Alcohol	2	12
	Gasoline	1.4	7.6
	Kerosine	0.7	5
LEL UEL	Methane	5	15
	МЕК	1.8	10
	Hexane	1.1	7.5
	Pentane	1.5	7.8
	Propane	2.1	10.1
	Toluene	1.2	7.1
	p-Xylene	1.1	7.0

Conditions created by oxidation of large molecules affects diffusion of molecules into the sensor Oxidation occurs on step-by-step basis, and proceeds only when molecules are in physical contact with catalyst coated surfaces within the bead. The very hot reaction by-products create convective currents as they rapidly diffuse away from the catalyst surfaces in the bead. Water vapor produced by oxidation of larger molecules creates a significant net outward flux, impeding diffusion of new molecules into the bead. Oxidation of methane: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$ To oxidize one molecule CH₄ three molecules enter bead, and three molecules produced as by-products. Oxidation of pentane: $C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$ To oxidize one molecule of pentane, nine molecules enter bead, and 11 molecules produced as by-products. Oxidation of nonane: $C_9H_{20} + 14O_2 \rightarrow 9CO_2 + 10H_2O$ To oxidize one molecule of nonane, 15 molecules enter bead, but 19 need to leave the sensor.

	Flammable and combustible liquid classifications (OSHA 29 CFR 1910.106)			
	Flash Point Temp °F	Boiling Point °F	Examples	
Class IA flammable liquid	Below 73 °F	Below 100 °F	Methyl ethyl ether Pentane Petroleum ether	
Class IB flammable liquid	Below 73 °F	Above 100 °F	Acetone Ethanol Gasoline Methanol	
Class IC flammable liquid	At or above 73 °F	Below 100 °F	Styrene Turpentine Xylene	
Class II combustible liquid	At or above 100 °F	Below 140 °F	Fuel oil no. 44 (Diesel) Mineral spirits Kerosene	
Class IIIA combustible liquid	At or above 140 °F	Below 200 °F	Aniline Carbolic acid	
Class IIIB combustible liquid	At or above 200 °F		Pinenoi Naphthalenes Pine oil	

Relative responses of 4	P-75 catalytic LEL sen	sor	
	Relative response	Relative response	Relative response
Combustible gas / vapor	when sensor	when sensor	when sensor
	calibrated on pentane	calibrated on propane	calibrated on methan
Hydrogen	2.2	1.7	1.1
Methane	2.0	1.5	1.0
Propane	1.3	1.0	0.7
n-Butane	1.2	0.9	0.6
n-Pentane	1.0	0.8	0.5
n-Hexane	0.9	0.7	0.5
n-Octane	0.8	0.6	0.4
Methanol	2.3	1.8	1.2
Ethanol	1.6	1.2	0.8
Isopropanol	1.4	1.1	0.7
Acetone	1.4	1.1	0.7
Ammonia	2.6	2.0	1.3
Toluene	0.7	0.5	0.4
Gasoline (unleaded)	1.2	0.9	0.6

	Correction Factors
 Correction factor is the reciprocal of The relative response of 4P-75 LEL = 0.8 Multiplying the instrument reading & provides the true concentration Given a correction factor for ethano of 40 per cent LEL, the true concent 40 % LEL X 1.25 Instrument Correction Reading Factor 	f the relative response sensor (methane scale) to ethanol is by the correction factor for ethanol of 1.25, and an instrument reading tration would be calculated as: = 50 % LEL True Concentration
2018 AIHce PDC 704: Chemical Detection in Real Time	Slide 223

Correction factors for 4	P-75 catalytic LEL se	nsor	
Combustible gas / vapor	Correction factor when sensor calibrated on pentane	Correction factor when sensor calibrated on propage	Correction factor when sensor calibrated on methane
Hvdrogen	0.45	0.59	0.91
Methane	0.50	0.67	1.00
Propane	0.77	1.00	1.54
n-Butane	0.83	1.11	1.67
n-Pentane	1.00	1.33	2.00
n-Hexane	1.11	1.43	2.22
n-Octane	1.25	1.67	2.50
Methanol	0.43	0.57	0.87
Ethanol	0.63	0.83	1.25
Isopropanol	0.71	0.95	1.43
Acetone	0.71	0.95	1.43
Ammonia	0.38	0.50	0.77
Toluene	1.43	2.00	2.86
Gasoline (unleaded)	0.83	1.11	1.67

Combustible Gas / Vapor	Relative response when sensor is calibrated to 2.5% (50% LEL) methane	Concentration of methane used for equivalent 50% LEL response
Hydrogen	1.1	2.75% CH4
Methane	1.0	2.5% Vol CH4
Ethanol	0.8	2.0% Vol CH4
Acetone	0.7	1.75% Vol CH4
Propane	0.65	1.62% Vol CH4
n-Pentane	0.5	1.25% Vol CH4
n-Hexane	0.45	1.12% Vol CH4
n-Octane	0.4	1.0% Vol CH4
Toluene	0.35	0.88% Vol CH4

Combustible sensor poisons	
 Combustible sensor poisons: Silicones (by far the most virulent poison) Hydrogen sulfide Note: The LEL sensor includes an internal filter that is more than sufficient to remove the H₂S in calibration gas. It takes very high levels of H₂S to overcome the filter and harm the LEL sensor 	
 Other sulfur containing compounds Phosphates and phosphorus containing substances Lead containing compounds (especially tetraethyl lead) High concentrations of flammable gas! Combustible sensor inhibitors: Halogenated hydrocarbons (Freons[®], trichloroethylene, methylene chloride, etc.) 	
2018 AIHce PDC 704: Chemical Detection in Real Time Slide 234 Protecting Worker Health	

Perform a bump test or calibration check before each day's use! "Bump test" (function check) is qualitative check in which the sensors are exposed to test gas for a time and at a concentration to activate all of the alarms to at least the lower alarm settings The test does not verify the accuracy of the readings or output of the sensors when exposed to aas "Calibration check" is a quantitative test using a traceable source of known concentration test gas to verify response of the sensors is within the manufacturer's acceptable limits. Different manufacturers are free to publish different requirements "Full calibration" includes adjustment of the instrument's response to match a desired value compared to a known traceable concentration of test gas Calibration interval and other requirements specified by manufacturer If instrument fails bump test or calibration check perform full calibration before use

			Cor	nbustible s	ensor limit	ations
Contaminant	LEL (Vol %)	Flashpoint Temp (%F)	OSHA PEL	NIOSH REL	TLV	5% LEL in PPM
Acetone	2.5%	-4⁰F (-20 ⁰C)	1,000 PPM TWA	250 PPM TWA	500 PPM TWA; 750 PPM STEL	1250 PPM
Diesel (No.2) vapor	0.6%	125⁰F (51.7⁰C)	None Listed	None Listed	15 PPM	300 PPM
Ethanol	3.3%	55⁰F (12.8 ⁰C)	1,000 PPM TWA	1000 PPM TWA	1000 PPM TWA	1,650 PPM
Gasoline	1.3%	-50°F (-45.6°C)	None Listed	None Listed	300 PPM TWA; 500 PPM STEL	650 PPM
n-Hexane	1.1%	-7%F (-21.7 %C)	500 PPM TWA	50 PPM TWA	50 PPM TWA	550 PPM
lsopropyl alcohol	2.0%	53⁰F (11.7⁰C)	400 PPM TWA	400 PPM TWA; 500 PPM STEL	200 PPM TWA; 400 PPM STEL	1000 PPM
Kerosene/ Jet Fuels	0.7%	100 – 162⁰F (37.8 – 72.3⁰C)	None Listed	100 mg/M3 TWA (approx. 14.4 PPM)	200 mg/M3 TWA (approx. 29 PPM)	350 PPM
MEK	1.4%	16ºF (-8.9ºC)	200 PPM TWA	200 PPM TWA; 300 PPM STEL	200 PPM TWA; 300 PPM STEL	700 PPM
Turpentine	0.8	95°F (35℃)	100 PPM TWA	100 PPM TWA	20 PPM TWA	400 PPM
Xylenes (o, m & p isomers)	0.9 - 1.1%	81 – 90°F (27.3 – 32.3 °C)	100 PPM TWA	100 PPM TWA; 150 PPM STEL	100 PPM TWA; 150 STEL	450 - 550 PPM

PID - Operating Principle
 PIDs used for measuring solvent, fuel and VOC vapors in the workplace environment
 PIDs use ultraviolet light as source of energy to remove an electron from neutrally charged target molecules creating electrically charged fragments (ions)
 This produces a flow of electrical current proportional to the concentration of contaminant
 The amount of energy needed to remove an electron from a particular molecule is the ionization energy (or IE)
 The energy must be greater than the IE in order for an ionization detector to be able to detect a particular substance
2018 AIHce PDC 704: Chemical Detection in Real Time Slide 270 Protecting Worker Health

Ionization Energy	Ionization ener	gy values
 IE determines if the PID can detect the gas 	Gas / vapor	Ionization energy (eV)
	Carbon monoxide	14.01
If the IE of the gas is less than the eV	Carbon dioxide	13.77
detect the gas	Methane	12.98
	Water	12.59
 Ionization Energy (IE) measures the bond strength of a gas and does not 	Oxygen	12.08
correlate with the Correction Factor	Chlorine	11.48
le vizz (ten En envizz e en formalia (te	Hydrogen sulfide	10.46
Ionization Energies are found in the NIOSH Pocket Guide and many chemical texts	n-Hexane	10.18
	Ammonia	10.16
	hexane (mixed isomers)	10.13
	acetone	9.69
	benzene	9.25
	butadiene	9.07
	toluene	8.82

• Win outp of la	dow mate put charac amp	rial and th teristics a	e filler ga as well as	s determi operation	PID lamp o	
PID lamp o Nominal lamp photon	characterist Primary gas in lamp	ics Major emi	ssion lines	Relative intensity	Window crystal	Crystal transmittance λ range (nm)
energies		eV	λ (nm)			
11.7 eV	Argon	11.83	104.8	1000	Lithium fluoride (LiF)	105 - 5000
		11.62	106.7	500		
10.6 eV	Krypton	10.64	116.5	200	Magnesium fluoride (MgF2)	115 - 7000
		10.03	123.6	650	1	
9.8 eV	Krypton	10.03	123.6	650	Calcium fluoride (CaF²)	125 - 8000

		Catalyt	ic (CC) LEL vs. PID Sensors
 Catalytic complement 	LEL and photoionization de entary detection techniques	etectors are	
 Catalytic methane, NOT dete 	LEL sensors excellent for n propane, and other commo ctable by PID	neasurement of on combustible gases	
 PIDs dete undetecta 	ct large VOC and hydrocarl ble by catalytic sensors	bon molecules that are	
 Best appring that may 	oach to VOC measurement at capable of measuring all be potentially present	is to use multi-sensor atmospheric hazards	
			AIHA
2018 AIHce PDC 704:	Chemical Detection in Real Time	Slide 282	Protecting Worker Health

Gas / vapor	RAE	BW	lon	GfG	IE (eV)	
Acetaldehyde	5.50	4.60	4.90	5.40	10.21	
Acetone	1.10	0.90	0.70	1.20	9.69	
Ammonia	9.70	10.60	8.50	9.40	10.20	
Benzene	0.50	0.55	0.50	0.53	9.25	
Butadiene	1.00	0.90	0.85	0.69	9.07	
Diesel fuel	0.80	0.93	0.75	0.90	n/a	
Ethanol	12.00	13.20	8.70	10.00	10.48	
Ethylene	10.00	11.00	8.00	10.10	10.52	
Gasoline	0.90	0.73	1.10	1.10	n/a	
n-Hexane	4.30	4.00	3.30	4.50	10.18	
Jet fuel (JP-8)	0.60	0.51	0.70	0.48	n/a	
Kerosene	n/a	1.11	0.80	n/a	9.53	
Methyl-ethyl-ketone (MEK)	0.90	0.78	0.77	0.90	9.53	
Naptha (iso-octane)	1.20	1.20	1.10	1.30	9.82	
Styrene	0.40	0.45	0.45	0.40	8.47	
Toluene	0.50	0.53	0.51	0.53	8.82	
Turpentine	0.40	0.45	0.45	0.45	n/a	
Vinyl chloride	2.00	2.19	2.20	1.80	10.00	
Xylene (mixed isomers)	0.40	0.50	0.43	0.50	8.50	

Ca need	an I still use a PID e substance-specific	ven when I readings?
 Broad-range sensors can be calibrate measurable gases, or You can choose the correction factor from the on-board library of CF values Although the sensor will still respond gases, readings will be displayed in thunits and scale 	d for specific for the desired gas s in the instrument to other measurable he correct measurement	
 Alarms should be set at levels which of the gases that are potentially prese that exceed the PEL 	prevent exposure to <u>any</u> nt in concentrations	
2018 AIHce PDC 704: Chemical Detection in Real Time	Slide 289 P	Trotecting Worker Health

			PID Alarms: Varying Mixtures
• Th • •	e Controlling Compound Every mixture of gases and vapors I most toxic and "controls" the setpo Determine that chemical and you ca mixture setpoint If we are safe for the "worst" chemic chemicals	has a compound tha int for the whole mix n determine a conse cal we will be safe fo	t is the cture ervative r all
2018 Alh	Ice PDC 704: Chemical Detection in Real Time	Slide 290	Protecting Worker Health

			PII Varying	D Alarms: Mixtures			
	Chemical Name	10.6eV CF	NIOSH REL Exposure Limit (8-hr. TWA)	1			
	Ethanol Turpentine Acetone	10.0 0.45 1.2	1000 100 250]			
	 Ethanol "appears" to be the safest compound Turpentine "appears" to be the most toxic 						
	This table only pro	vides half of the dec.	ision making equation	АНТА .			
2018 AIH	Ice PDC 704: Chemical Detecti	on in Real Time	Slide 291 Protectin	g Worker Health			

		PID Alarms: Varying Mixtures
 Set the PID for the compound with a equivalent units and you are safe for Divide the EL in chemical units by 0 	the lowest Exposure L or all of the chemicals CF to get the EL in iso	.imit (EL) in in the mixture butylene
EL _{Isobutylene} =	EL _{chemical} CF _{chemical}	
2018 AIHce PDC 704: Chemical Detection in Real Time	Slide 292	Protecting Worker Health

					PID Alarms: Varying Mixtures
					_
	Chemical name	CF _{iso} (10.6eV)	NIOSH REL (8 hr. TWA)	EL _{ISO (PEL)}	
	Ethanol	10.0	1000	100.0	
	Turpentine	0.45	100	222.3	
	Acetone	1.2	250	208.4	
•	IF you are foll compound" w "Isobutylene The equivaler specific Corre	lowing the l /hen the ex _l Units" nt EL _{iso} is a ection Facto	NIOSH REL the posure limits a calculation the or (CF)	en ethanol i are express at involves	's the "controlling ed in equivalent a manufacturer
•	Similar calcul published CF	ations can list	be done for ar	ny PID brand	d that has a
					≪AIHA
2018 AlHc	e PDC 704: Chemic	al Detection in R	eal Time	Slide 293	Protecting Worker Health

	PID Varying I	Alarms: Mixtures				
Chemical name	CE	NIOSH REI	Flamme	TI V®	FL	
	(10.6eV)	(8 hr. TWA)	ISO (PEL)	(8hr. TWA)	LEISO (TLV)	
Ethanol	10.0	1000	100.0	1000	100.0	
Turpentine	0.45	100	222.3	20	44.5	
Acetone	1.2	250	208.4	500	416.7	
 IF you are following the NIOSH REL then ethanol is the "controlling compound" when the exposure limits are expressed in equivalent "Isobutylene Units" BE CAREFUL: If you are following the TLV the controlling chemical would be turpentine! 						
				:/ /		
2018 AIHce PDC 704: C	hemical Detection in Rea	al Time	Slide 294	Protectin	g Worker Health	

Selection matrix for Sensors for measurement of combustible gas and VOCs								nt Ss
	Able to detect LEL range C1 - C5 hydro- carbon gases (methane, ethane, propane, butane, pentane and natural gas)	Able to detect LEL range C6 – C9 hydro- carbon gases (hexane, heptane, octane, nonane)	Able to accurately detect LEL range heavy fuel vapors (e.g. diesel, jet fuel, kerosene, etc.)	Able to detect heavy fuel vapors in low ppm range (e.g. diesel, jet fuel, kerosene, etc.)	Able to use in low oxygen atmospheres	Vulnerable to sensor poisons (e.g. silicones, phosphine, tetraethyl lead, H2S, etc.)	Able to use for high range combustible gas measurement (100 % LEL and higher)	Able to measure H2
Standard Pellistor type LEL sensor	Yes	Yes	No	No	No	Yes	No	Yes
NDIR combustible gas sensor	Yes	Yes	Yes	Yes*	Yes	No	Yes	No
PID (with standard 10.6 eV lamp)	No	Yes ^t	Yes ^{‡‡}	Yes	Yes	No	No	No
Electrochemical H2 sensor	No	No	No	No	Yes	No	No	Yes
Thermal Conductivity Sensor	Yes	Yes	No	No	Yest	No****	Yes	Yes
2018 AlHce	PDC 704: Che	emical Detectio	n in Real Time		Slide 296	Pr	otecting Worke	er Health

Actual toxicity testing results from gasoline fuel barge #1						
Previous Loadings: Cat Feed	stock/Crude	Oil/Cat Feedsto	ck			
SPACE	% LEL	PPM TVOC (iso)	PPM Benzene	%TVOC from benzene		
No (1) Port Cargo Tank	0	32.8	0.8	2.44 %		
No (2) Port Cargo Tank	0	38.2	0.4	1.05%		
No (3) Port Cargo Tank	0	45.5	0.4	0.88%		
No (4) Port Cargo Tank	0	75.8	0.3	0.4%		
No (5) Port Cargo Tank	0	64.3	0.3	0.47%		
No (1) Stbd Cargo Tank	0	34.8	0.6	1.72%		
No (2) Stbd Cargo Tank	0	44.6	0.3	0.67 %		
No (3) Stbd Cargo Tank	0	39.6	0.2	0.51 %		
No (4) Stbd Cargo Tank	0	58.4	0.4	0.68 %		
No (5) StbdCargoTank	0	64.8	0.5	0.77%		

	TVOC alarm setting based on fractional concentration benzene for Barge #1					
• Worst o	ase (No 1 Port C	argo Tank)				
• Sol	ve for desired tal	ke action level of	1.0 ppm benzen	9		
• Giv frac	en "worst case" ction of TVOC = .	measured conce 0244	ntration of benze	ne as		
• <i>tv</i>	OC threshold ala	rm = 1.0 ppm ÷ 0.	0244 = 40.98 ppn	า		
• Set iso exc	 Setting TVOC hazardous condition threshold alarm of 41 ppm isobutylene ensures the PEL for benzene of 1.0 PPM is not exceeded: 41 ppm TVOC x .0244 = 1.0004 ppm 					
Benzene Limit	Exposure	1.0 PPM	0.5 PPM	0.1 PPM		
TVOC ala	arm setting	41 PPM	20.5 PPM	4.1 PPM		
2018 AIHce PDC 704: (Chemical Detection in Re	val Time	Slide 303	VAIHA Protecting Worker Health		

		Actual to	xicity testing re gasoline fue	sults from el barge #2			
Previous Loadings: Natural Gasoline (3X)							
SPACE	% LEL	PPM TVOC (iso)	PPM Benzene	%TVOC from benzene			
No (1) Port Cargo Tank	0	37.3	0.0	0 %			
No (2) Port Cargo Tank	0	44.1	0.1	0.23%			
No (3) Port Cargo Tank	0	53.8	0.2	0.37 %			
No (4) Port Cargo Tank	0	48.2	0.1	0.21%			
No (5) Port Cargo Tank	0	68.5	0.4	0.58 %			
No (1) Stbd Cargo Tank	0	13.2	0.0	0%			
No (2) Stbd Cargo Tank	0	29.0	0.0	0 %			
No (3) Stbd Cargo Tank	0	58.1	0.1	0.17%			
No (4) Stbd Cargo Tank	0	48.7	0.2	0.41 %			
No (5) StbdCargoTank	0	63.3	0.3	0.44%			

	TVOC ala conc	arm setting ba entration ben	ased on fractional zene for Barge #2
Worst case (No 5 Port Care	go Tank)		
Solve for desired take	action level of	1.0 ppm benzene	•
 Given "worst case" me fraction of TVOC = .00 	easured concer 58	ntration of benze	ne as
TVOC threshold alarm	= 1.0 ppm ÷ 0.0	0058 = 172.4 ppm	,
 Setting TVOC hazardo ppm isobutylene ensu exceeded: 172.4 x .0 	us condition th res the PEL for 0058 = 0.9999 pj	reshold alarm of benzene of 1.0 F om	172.41 PPM is not
Desired Exposure Limit	1.0 PPM	0.5 PPM	0.1 PPM
TVOC alarm setting	172 PPM	86 PPM	17.2 PPM
	1		 *AIHA
2018 AlHce PDC 704: Chemical Detection in	n Real Time	Slide 305	Protecting Worker Healt

		Questions?
• Thank you!		
2018 AIHce PDC 704: Chemical Detection in Real Time	Slide 306	Protecting Worker Health

Gas Chromatography	
 A gas chromatograph is a chemical analysis instrument separating chemical compounds in a sample 	for
Mass Spectrometry	
 Mass spectrometry measures the mass-to-charge ratio of When molecules of a pure compound are reproducibly fi and ionized, the method provides a mass spectrum that to determine the chemical composition of the material. A spectrum can be interpreted following predictable rules, searched against a mass spectra database to help identi- unknown compounds. 	of ions. ragmented can be used A mass and can be ify initially
 A mass spectrum can be though of as a "fingerprint" for chemical. 	r a given
2018 Allino DDC 704. Chomical Datastian in Deal Time Slide 244	Protecting Worker Health

	Need for	Trained GC-MS	S Operators
Pro	blems:		
(1)	Total reliance on mass spectrum datab misidentification	oase search can le	ad to
(2)	(2) GC-MS instruments are complex and require careful operation and regular maintenance		
(3)	Steep learning curve –constant practice (use) needed for optimum proficiency		
			V AIHA
2018 AIHo	e PDC 704: Chemical Detection in Real Time	Slide 351	Protecting Worker Health

Scenario 1

Location: A new-construction manhole that has not yet been connected to an active sewer system

Situation: A worker has entered and exited this manhole numerous times this week. Today, a worker entered the manhole and a few minutes later his supervisor at the surface called to him with no response. When the supervisor looked in the manhole he noticed that the worker was slumped over and not moving.

Real-Time Detection Tool Selection:

- A. What are the possible types of atmospheric hazards and how dangerous is this situation?
- B. What types of detection tools should have been used prior to entry?
- C. What limitations exist for the detection tools you selected?
- D. Describe the training and experience needed to correctly operate the selected detection tools

State	Year/ Month	Work Process	Fatalities/ Near-Misses	Confined Space Atmosphere
МО	2011/10	Working in new manhole	1/1	$lowO_2/high CO_2$
NC	2011/06	Working in manhole	2/0	low O ₂
ТХ	2009/04	Fell in manhole/rescue attempt	1/1	low O ₂
IL	2007/06	Working in new water vault	2/1	low O ₂
LA	2007/08	Grouting in manhole	2/0	low O ₂
GA	2006/09	Retrieving laser equipment	1/0	low O ₂
ТХ	2005/07	Testing new storm sewer line	1/0	low O ₂
ND	2005/07	Completing new manhole	1/0	-
WI	2005/06	Testing prior to sewer hookup	2/0	-
TN	2004/09	Working in new manhole	2/0	low O ₂
МО	2004/08	Grouting in manhole	1/0	low O_2 /high CO_2
РА	2004/07	Entry into new manhole	2/0	low O ₂
GA	2004/07	Opening valve in water vault	1/1	low O_2 /high CO_2
WI	2003/08	Opening valve in water vault	1/0	low O_2 /high CO_2
FL	2003/08	Leak repair in new manhole	1/1	-
NC	2003/03	Entry into water vault manhole	1/0	low O ₂
ТХ	2001/12	Checking grade in 24" water pipe	1/0	-
KS	2001/08	Vacuum testing new sewer line	3/0	low O_2 /high CO_2
ОН	2000/09	Working in new manhole	2/0	low O_2 /high CO_2
CA	2000/05	Working in sump manhole	2/0	low O ₂

Below-Ground Fatalities (Partial Listing): No Connection to a Sewer System

Scenario 2

Location: A manufacturing site where methylene diphenyl diisocyanate (MDI) is stored in a large heated tank.

Situation: A problem developed with the MDI tank heaters over a weekend. The heaters ran continuously and overheated the MDI, leaving a solid mass of material in the tank. A worker entered the tank with a jackhammer to work on the solidified material and spent about 50 minutes inside. He began to feel sick, and the crew broke for lunch. The tank entrant stayed in the air-conditioned vehicle used to drive to Taco Bell while co-workers ordered lunch, but entered to tell them he couldn't hold his head up. He was driven to a hospital, but en route the crew pulled over and an ambulance was called as the tank entrant's condition was worsening. He was admitted to the hospital with methemoglobinemia where he remained for more than 5 weeks. The tank entrant suffered brain damage due to chemical hypoxia (among other maladies).

Real-Time Detection Tool Selection:

- A. What are the possible types of atmospheric hazards and how dangerous is this situation?
- B. What types of detection tools should be used to identify potential airborne stressors?
- C. What limitations exist for the detection tools you selected?
- D. Describe the training and experience needed to correctly operate the selected detection tools

Person-portable GC-MS (carry-on luggage)

H₂ -C -

R =

NCO

Quantitative laboratory analysis results for 15 minute samples collected from the tank atmosphere through a threaded port (about 2.5 cm diameter) in the MDI tank

Aniline, 62-53-3 (ppm)	<i>p</i> -Toluidine, 106-49-0 (ppm)
193.5	44.1
205.9	51.1

Scenario 3

Location: A brewery where large volumes of beer are fermented in chilled vats

Situation: After product is removed from a vat workers empty the remaining material in the vat onto the floor and then clean the floor with a hose to remove the material to a drain nearby. Following this the vat will be ventilated before entry by a cleaning crew. On one occasion a worker who opened a vat to drain the contents was overcome and lost consciousness.

Real-Time Detection Tool Selection:

- A. What are the possible types of atmospheric hazards and how dangerous is this situation?
- B. What types of detection tools should have been used while draining a vat?
- C. What limitations exist for the detection tools you selected?
- D. Describe the training and experience needed to correctly operate the selected detection tools

 $CO_2 + N_2H_4 \longrightarrow NH_2NHCOOH$

Selective NDIR detection of CO_2 (λ ≈4.3 $\mu m)$

"Other" CO₂ exposure scenarios...

"It must be remembered that when we hold an air sampling device in our hands. We may also hold the life of a fellow human being. They both deserve the best we have to offer."

J. Brennan Gisclard: *The use of detectors and test kits in industrial hygiene investigations.* The 24th annual meeting, Industrial Hygiene Foundation, Mellon Institute, Pittsburgh, PA, October 28, 1959.

ROAD COURSES

Advance your career with Face-to-Face training.

Fundamentals of Industrial Hygiene

> 32 Contact Hours

Westerville, OH / March 19 - 22 / September 17 - 20 This four-day course is a great refresher for those re-entering the field or needing a brush-up, as well as OEHS professionals new to IH responsibilities.

Exposure and Chemical Monitoring: Beyond IH Fundamentals

- > 24 Contact Hours
- > Westerville, OH / October 15 17

This intermediate course is perfect for professionals and senior managers, designed to provide additional training on occupational exposure, qualitative exposure assessment, equipment calibration, and sampling.

To register, visit www.aiha.org/education/FacetoFace

CareerAdvantage[™]

The #1 Career Resource for IH/OH/OEHS Professionals.

Get the edge, and surge ahead.

Find your perfect match at the *CareerAdvantage* "Building Careers for Life" Development Fair

Make meaningful connections with a wide range of events for professionals of all levels:

- Personal Mock Interviewing Sessions
- Résumé Critiquing and Improvement
- Seminars
- Speed Networking

Visit our website for the full schedule of events: www.aihce2018.org

Questions?

Contact Wanda Barbour, Senior Manager of Member and Customer Relations, at wbarbour@aiha.org or 703-846-0782.

Join us!

Pennsylvania Convention Center, Hall B – The Hub, Section CADF Monday, May 21 – Wednesday, May 23, 2018 9:00 a.m. – 4:00 p.m. daily

It's here!

Check out your newest member benefit:

a high-powered online community and virtual meeting place, built to meet your professional needs for connecting, collaborating, and conquering.

Get started.

Log in, ask a question, get an answer...all in real time.

Collaborate online in private communities. Share a document, build a library. Network with peers in an Open Forum. Contribute and receive expertise with subject matter experts in your field. See latest discussions and connect with other AIHA members.

Go to: community.AIHA.org

Visit Catalyst today, and see what it's all about!

AIHA's new online community is here! Don't miss a thing whitelist your Catalyst emails. Log in now!

The 11th International Occupational Hygiene Association (IOHA) International Scientific Conference

September 24-26, 2018 | Washington, DC, USA | #IOHA2018USA

What is IOHA 2018 and Why should you attend?

The 11th IOHA International Scientific Conference (IOHA 2018) is a special event, whose mission is to create a global appeal to an international audience of multi-disciplined professionals with a focus on worker health protection and exposure control. The conference will provide a unique integrated platform of workplace health and well-being in a professional and scientific arena ideal for hearing the latest science and viewpoints, as well as networking and professional development opportunities.

ANNOUNCING

Keynote Speaker Nancy Leppink - Branch Chief International Labour Organization, (LABADMIN/OSH) Genève, Switzerland

Ms. Leppink will present worker health issues in a global economy dominated by large multinational corporations with

access to labor in lesser developed countries, the impacts of such dependencies on worker well-being and rights, and the occupational health infrastructure needs in developing countries to address these new challenges.

Where will IOHA 2018 be located?

The IOHA conference will be held in Washington, DC, USA at the Marriott Marquis Hotel, 901 Massachusetts Avenue, NW.

Important Dates

- Professional Development Course (PDC) Presentations - September 22-23 & 27, 2018
- Conference September 24-26, 2018

EXP2019

THED

Advancing/Worker Health & Safety

MAY 20-22 MINNEAPOLIS, MN

Advancing Worker Health & Safety